Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bio Protoc ; 14(17): e5058, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39282232

RESUMEN

The root parasitic weed Striga hermonthica has a devastating effect on sorghum and other cereal crops in Sub-Saharan Africa. Available Striga management strategies are rarely sufficient or not widely accessible or affordable. Identification of soil- or plant-associated microorganisms that interfere in the Striga infection cycle holds potential for development of complementary biological control measures. Such inoculants should be preferably based on microbes native to the regions of their application. We developed a method to assess microbiome-based soil suppressiveness to Striga with a minimal amount of field-collected soil. We previously used this method to identify the mechanisms of microbe-mediated suppression of Striga infection and to test individual microbial strains. Here, we present protocols to assess the functional potential of the soil microbiome and individual bacterial taxa that adversely affect Striga parasitism in sorghum via three major known suppression mechanisms. These methods can be further extended to other Striga hosts and other root parasitic weeds. Key features • This protocol provides a detailed description of the methods used in Kawa et al. [1]. • This protocol is optimized to assess soil suppressiveness to Striga infection by using natural field-collected soil and the same soil sterilized by gamma-radiation. • This protocol is optimized to test bacterial (and not fungal) isolates. • This protocol can be easily extended to other host-parasite-microbiome systems.

2.
Plant Physiol Biochem ; 216: 109093, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241629

RESUMEN

Although soluble silicate was reported to accelerate wound healing in muskmelon fruit through encouraging the deposition of lignin or free fatty acids, whether sodium silicate affects the biosynthesis, cross-linking and transport of suberin monomers during potato wound healing remains unknown. In this study, sodium silicate upregulated the expression and activity of 4-coumarate: coenzyme A ligase (4CL), phenylalanine ammonia lyase (PAL), and promoted the synthesis of phenolic acids (caffeic acid, p-coumaric acid, cinnamic acid, sinapic acid, and ferulic acid) in tuber wounds. Meanwhile, sodium silicate upregulated the expression of glycerol-3-phosphate acyltransferase (StGPAT), fatty acyl reductase (StFAR), long-chain acyl-CoA synthetase (StLACS), ß-ketoacyl-CoA synthase (StKCS), and cytochrome P450 (StCYP86A33), and thus increased the levels of α, ω-diacids, ω-hydroxy acids, and primary alcohols in wounds. Sodium silicate also induced the expression of ω-hydroxy acid/fatty alcohol hydroxycinnamoyl transferase (StFHT), ABC transporter (StABCG), and promoted the deposition of suberin in wound surface, hence reducing tuber disease index and weight loss during healing. Taken together, sodium silicate may accelerate suberin accumulation at potato tubers wound through inducing the phenylpropanoid pathway and fatty acid metabolism.

3.
Plant Cell Environ ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110071

RESUMEN

In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.

4.
Plant Physiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196772

RESUMEN

Rice (Oryza sativa L.) and many other wetland plants form an apoplastic barrier in the outer parts of the roots to restrict radial O2 loss to the rhizosphere during soil flooding. This barrier facilitates longitudinal internal O2 diffusion via gas-filled tissues from shoot to root apices, enabling root growth in anoxic soils. We tested the hypothesis that Leaf Gas Film 1 (LGF1), which influences leaf hydrophobicity in rice, plays a crucial role in tight outer apoplastic barriers formation in rice roots. We examined the roots of a rice mutant (dripping wet leaf 7, drp7) lacking functional LGF1, its wild type, and an LGF1 overexpression line for their capacity to develop outer apoplastic barriers that restrict radial O2 loss. We quantified the chemical composition of the outer part of the root and measured radial O2 diffusion from intact roots. The drp7 mutant exhibited a weak barrier to radial O2 loss compared to the wild type. However, introducing functional LGF1 into the mutant fully restored tight barrier function. The formation of a tight barrier to radial O2 loss was associated with increased glycerol ester levels in exodermal cells, rather than differences in total root suberization or lignification. These results demonstrate that, in addition to its role in leaf hydrophobicity regulation, LGF1 plays an important role in controlling the function of the outer apoplastic barriers in roots. Our study suggests that increased deposition of glycerol esters in the suberized root exodermis establishes a tight barrier to radial O2 loss in rice roots.

5.
Planta ; 260(3): 64, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073466

RESUMEN

MAIN CONCLUSION: We identified tomato leaf cuticle and root suberin monomers that play a role in the response to nitrogen deficiency and salinity stress and discuss their potential agronomic value for breeding. The plant cuticle plays a key role in plant-water relations, and cuticle's agronomic value in plant breeding programs is currently under investigation. In this study, the tomato cutin mutant cd1, with altered fruit cuticle, was physiologically characterized under two nitrogen treatments and three salinity levels. We evaluated leaf wax and cutin load and composition, root suberin, stomatal conductance, photosynthetic rate, partial factor productivity from applied N, flower and fruit number, fruit size and cuticular transpiration, and shoot and root biomass. Both nitrogen and salinity treatments altered leaf cuticle and root suberin composition, regardless of genotype (cd1 or M82). Compared with M82, the cd1 mutant showed lower shoot biomass and reduced partial factor productivity from applied N under all treatments. Under N depletion, cd1 showed altered leaf wax composition, but was comparable to the WT under sufficient N. Under salt treatment, cd1 showed an increase in leaf wax and cutin monomers. Root suberin content of cd1 was lower than M82 under control conditions but comparable under higher salinity levels. The tomato mutant cd1 had a higher fruit cuticular transpiration rate, and lower fruit surface area compared to M82. These results show that the cd1 mutation has complex effects on plant physiology, and growth and development beyond cutin deficiency, and offer new insights on the potential agronomic value of leaf cuticle and root suberin for tomato breeding.


Asunto(s)
Lípidos de la Membrana , Mutación , Nitrógeno , Hojas de la Planta , Raíces de Plantas , Salinidad , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Nitrógeno/metabolismo , Lípidos de la Membrana/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Lípidos , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/efectos de los fármacos , Frutas/fisiología , Fotosíntesis , Transpiración de Plantas , Estrés Salino/genética , Ceras/metabolismo , Biomasa , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/efectos de los fármacos
6.
Plant J ; 119(5): 2199-2216, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990506

RESUMEN

The osmotic resistance mechanism has been extensively studied in whole plants or plant tissues. However, little is known about it in embryogenic tissue (ET) which is widely used in plant-based biotechnological systems. Suberin, a cell wall aliphatic and aromatic heteropolymer, plays a critical role in plant cells against osmosis stress. The suberin regulatory biosynthesis has rarely been studied in gymnosperms. Here, PaMYB11, a subgroup 11 R2R3-MYB transcription factor, plays a key role in the osmotic resistance of Norway spruce (Picea abies) ETs during cryoprotectant pretreatment. Thus, RNA-seq, histological, and analytical chemical analyses are performed on the stable transformations of PaMYB11-OE and PaMYB11-SRDX in Norway spruce ETs. DAP-seq, Y1H, and LUC are further combined to explore the PaMYB11 targets. Activation of PaMYB11 is necessary and sufficient for suberin lamellae deposition on Norway spruce embryogenic cell walls, which plays a decisive role in ET survival under osmotic stress. Transcriptome analysis shows that PaMYB11 enhances suberin lamellae monomer synthesis by promoting very long-chain fatty acid (VLCFA) synthesis. PaPOP, PaADH1, and PaTET8L, the first two (PaADH1 and PaPOP, included) involved in VLCFA synthesis, are proved to be the direct targets of PaMYB11. Our study identified a novel osmotic response directed by PaMYB11 in Norway spruce ET, which provides a new understanding of the resistance mechanism against osmosis in gymnosperms.


Asunto(s)
Criopreservación , Lípidos , Presión Osmótica , Picea , Proteínas de Plantas , Picea/genética , Picea/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Criopreservación/métodos , Ósmosis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo
7.
Plants (Basel) ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065482

RESUMEN

This research investigated the structural and chemical modifications of Dahlia 'Kennemerland' across different technological conditions and throughout the vegetation period. Using FT-IR imaging, this study focused on the changes in the inulin, lignin, and suberin contents of tuberous roots. FT-IR maps were generated to visualize the distribution of these compounds across scanned areas, highlighting variations across cultivation methods and seasonal stages. The key compounds analyzed included inulin, lignin, and suberin, which were identified in different root zones. The results showed that inulin was distributed in all analyzed areas, predominantly in zone 1 (periderm), with a distribution that increased with forced cultivation, while lignin and suberin distributions varied with zone and season. Forced tuberous root lignin was detected in all four areas analyzed, in the fall accumulating mainly in area 4 and in suberin starting from summer until autumn. Based on the evaluation of the maps obtained by representing the area ratios of specific bands (inulin/lignin and inulin/suberin), we established where the inulin was present in the highest quantity and concluded that suberin was the constituent with the lowest concentration in tuberous Dahlia roots. These findings emphasize the influence of technological factors and seasonal changes on the biochemical makeup of tuberous Dahlia roots. This detailed biochemical mapping provides insights for optimizing Dahlia cultivation and storage for various industrial applications. This study concludes that FT-IR spectroscopy is an effective tool for monitoring and understanding the biochemical dynamics of Dahlia roots, aiding their agricultural and industrial utilization.

8.
Front Plant Sci ; 15: 1384602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867884

RESUMEN

Introduction: Unintended wounding or bruising during harvest or postharvest handling leads to significant tuber loss and imposes economic burden to potato industry. Therefore, finding effective strategies to mitigate wound-related tuber losses is very important from industry perspectives. Formation of protective barrier through accumulation of suberin polyphenolics (SPP) is a natural and initial response of potato tuber tissues to wounding. Materials and methods: In this study, efficacy of two natural elicitors, such as chitosan oligosaccharide (COS 0.125 g L-1) and cranberry pomace residue (Nutri-Cran 0.125 g L-1) was investigated using a mechanically wounded tuber tissue model and by histological determination of SPP formation in five agronomically relevant and red-skin potato cultivars (Chieftain, Dakota Rose, Dakota Ruby, Red LaSoda, Red Norland). Furthermore, the potential role of stress protective metabolic regulation involving phenolic metabolites, proline, and antioxidant enzymes in tuber WH processes were also investigated during 0-9 days after wounding. Results and discussion: Exogenous treatments of both COS and Nutri-Cran resulted into enhanced SPP formation in wounded surface, but the impact was more rapid with Nutri-Cran treatment in select cultivars. Greater contents of total soluble phenolic, ferulic acid, chlorogenic acid, total antioxidant activity, and superoxide dismutase activity were also observed in elicitor treated tuber tissues at different time points after wounding. Nutri-Cran treatment also reduced the activity of succinate dehydrogenase in Red Norland and Dakota Ruby at 3 d, indicating a suppression in respiration rate. Collectively, these results suggest that Nutri-Cran can be potentially utilized as an effective WH treatment to potato tubers for minimizing wound-related losses.

9.
BMC Plant Biol ; 24(1): 488, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825683

RESUMEN

BACKGROUND: The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS: Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION: Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.


Asunto(s)
Corteza de la Planta , Quercus , Quercus/genética , Quercus/crecimiento & desarrollo , Corteza de la Planta/genética , Corteza de la Planta/química , Corteza de la Planta/metabolismo , Transcriptoma , Hibridación Genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Lípidos
10.
Plant Cell Environ ; 47(9): 3638-3653, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38757412

RESUMEN

Salinity tolerance requires coordinated responses encompassing salt exclusion in roots and tissue/cellular compartmentation of salt in leaves. We investigated the possible control points for salt ions transport in roots and tissue tolerance to Na+ and Cl- in leaves of two contrasting mungbean genotypes, salt-tolerant Jade AU and salt-sensitive BARI Mung-6, grown in nonsaline and saline (75 mM NaCl) soil. Cryo-SEM X-ray microanalysis was used to determine concentrations of Na, Cl, K, Ca, Mg, P, and S in various cell types in roots related to the development of apoplastic barriers, and in leaves related to photosynthetic performance. Jade AU exhibited superior salt exclusion by accumulating higher [Na] in the inner cortex, endodermis, and pericycle with reduced [Na] in xylem vessels and accumulating [Cl] in cortical cell vacuoles compared to BARI Mung-6. Jade AU maintained higher [K] in root cells than BARI Mung-6. In leaves, Jade AU maintained lower [Na] and [Cl] in chloroplasts and preferentially accumulated [K] in mesophyll cells than BARI Mung-6, resulting in higher photosynthetic efficiency. Salinity tolerance in Jade AU was associated with shoot Na and Cl exclusion, effective regulation of Na and Cl accumulation in chloroplasts, and maintenance of high K in root and leaf mesophyll cells.


Asunto(s)
Cloruros , Cloroplastos , Células del Mesófilo , Hojas de la Planta , Raíces de Plantas , Potasio , Tolerancia a la Sal , Sodio , Vigna , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Cloroplastos/metabolismo , Sodio/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Células del Mesófilo/metabolismo , Potasio/metabolismo , Cloruros/metabolismo , Vigna/metabolismo , Vigna/fisiología , Fotosíntesis , Transporte Biológico
11.
Plant J ; 119(3): 1239-1257, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776519

RESUMEN

The essence of wound healing is the accumulation of suberin at wounds, which is formed by suberin polyphenolic (SPP) and suberin polyaliphatic (SPA). The biosynthesis of SPP and SPA monomers is catalyzed by several enzyme classes related to phenylpropanoid metabolism and fatty acid metabolism, respectively. However, how suberin biosynthesis is regulated at the transcriptional level during potato (Solanum tuberosum) tuber wound healing remains largely unknown. Here, 6 target genes and 15 transcription factors related to suberin biosynthesis in tuber wound healing were identified by RNA-seq technology and qRT-PCR. Dual luciferase and yeast one-hybrid assays showed that StMYB168 activated the target genes StPAL, StOMT, and St4CL in phenylpropanoid metabolism. Meanwhile, StMYB24 and StMYB144 activated the target genes StLTP, StLACS, and StCYP in fatty acid metabolism, and StFHT involved in the assembly of SPP and SPA domains in both native and wound periderms. More importantly, virus-induced gene silencing in S. tuberosum and transient overexpression in Nicotiana benthamiana assays confirmed that StMYB168 regulates the biosynthesis of free phenolic acids, such as ferulic acid. Furthermore, StMYB24/144 regulated the accumulation of suberin monomers, such as ferulates, α, ω-diacids, and ω-hydroxy acids. In conclusion, StMYB24, StMYB144, and StMYB168 have an elaborate division of labor in regulating the synthesis of suberin during tuber wound healing.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lípidos , Proteínas de Plantas , Tubérculos de la Planta , Solanum tuberosum , Factores de Transcripción , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Lípidos/biosíntesis , Nicotiana/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente , Ácidos Cumáricos/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(21): e2314570121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739804

RESUMEN

Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glicerol-3-Fosfato O-Aciltransferasa , Lípidos , Raíces de Plantas , 1-Acilglicerol-3-Fosfato O-Aciltransferasa , Ácido Abscísico/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Lípidos/química , Lípidos de la Membrana/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética
13.
Plant Cell Rep ; 43(5): 115, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613634

RESUMEN

KEY MESSAGE: The mechanism of conferring salt tolerance by AtTPS9 involves enhanced deposition of suberin lamellae in the Arabidopsis root endodermis, resulting in reduction of Na+ transported to the leaves. Members of the class I trehalose-6-phosphate synthase (TPS) enzymes are known to play an important role in plant growth and development in Arabidopsis. However, class II TPSs and their functions in salinity stress tolerance are not well studied. We characterized the function of a class II TPS gene, AtTPS9, to understand its role in salt stress response and root development in Arabidopsis. The attps9 mutant exhibited significant reduction of soluble sugar levels in the leaves and formation of suberin lamellae (SL) in the endodermis of roots compared to the wild type (WT). The reduction in SL deposition (hydrophobic barriers) leads to increased apoplastic xylem loading, resulting in enhanced Na+ content in the plants, which explains salt sensitivity of the mutant plants. Conversely, AtTPS9 overexpression lines exhibited increased SL deposition in the root endodermis along with increased salt tolerance, showing that regulation of SL deposition is one of the mechanisms of action of AtTPS9 in conferring salt tolerance to Arabidopsis plants. Our data showed that besides salt tolerance, AtTPS9 also regulates seed germination and root development. qRT-PCR analyses showed significant downregulation of selected SNF1-RELATED PROTEIN KINASE2 genes (SnRK2s) and ABA-responsive genes in the mutant, suggesting that AtTPS9 may regulate the ABA-signaling intermediates as part of the mechanism conferring salinity tolerance.


Asunto(s)
Arabidopsis , Tolerancia a la Sal , Tolerancia a la Sal/genética , Arabidopsis/genética , Estrés Salino/genética , Glucosiltransferasas
14.
Plant Biol (Stuttg) ; 26(4): 568-582, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634447

RESUMEN

The plant cuticle controls non-stomatal water loss and can serve as a barrier against biotic agents, whereas the heteropolymer suberin and its associated waxes are deposited constitutively at specific cell wall locations. While several transcription factors controlling cuticle formation have been identified, those involved in the transcriptional regulation of suberin biosynthesis remain poorly characterized. The major goal of this study was to further analyse the function of the R2R3-Myeloblastosis (MYB) transcription factor AtMYB41 in formation of the cuticle, suberin, and suberin-associated waxes throughout plant development. For functional analysis, the organ-specific expression pattern of AtMYB41 was analysed and Atmyb41ge alleles were generated using the CRISPR/Cas9 system. These were investigated for root growth and water permeability upon stress. In addition, the fatty acid, wax, cutin, and suberin monomer composition of different organs was evaluated by gas chromatography. The characterization of Atmyb41ge mutants revealed that AtMYB41 negatively regulates the production of cuticular lipids and fatty acid biosynthesis in leaves and seeds, respectively. Remarkably, biochemical analyses indicate that AtMYB41 also positively regulates the formation of cuticular waxes in stems of Arabidopsis thaliana. Overall, these results suggest that the AtMYB41 acts as a negative regulator of cuticle and fatty acid biosynthesis in leaves and seeds, respectively, but also as a positive regulator of wax production in A. thaliana stems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Lípidos , Factores de Transcripción , Ceras , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Grasos/metabolismo , Lípidos/biosíntesis , Lípidos de la Membrana/metabolismo , Mutación , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ceras/metabolismo
15.
Foods ; 13(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672820

RESUMEN

Postharvest rot, caused by Penicillium expansum, in tomatoes poses significant economic and health risks. Traditional control methods, such as the use of fungicides, raise concerns about pathogen resistance, food safety, and environmental impact. In search of sustainable alternatives, plant secondary metabolites, particularly phenolic compounds and their derivatives, have emerged as promising natural antimicrobials. Among these, feruloyl glyceride (FG), a water-soluble derivative of ferulic acid, stands out due to its antioxidant properties, antibacterial properties, and improved solubility. In this study, we provide evidence demonstrating FG is capable of inhibiting the spore germination of P. expansum and effectively reducing the incidence rate of Penicillium rot of tomatoes, without compromising quality. Electron microscopy observations combined with metabolite and transcriptomic analyses revealed that FG treatments resulted in enhanced suberin accumulation through promoting the expression of suberin synthesis related genes and, consequently, inhibited the growth and expansion of P. expansum on the fruits. This work sheds light on the mechanisms underlying FG's inhibitory effects, allowing its potential application as a natural and safe alternative to replace chemical fungicides for postharvest preservation.

16.
Polymers (Basel) ; 16(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611200

RESUMEN

The utilization of polyols derived from renewable sources presents an opportunity to enhance the sustainability of rigid polyurethane (PUR) foams, thereby contributing to the advancement of a circular bioeconomy. This study explores the development of PUR rigid foams exclusively using polyols sourced from second-generation renewable biomass feedstocks, specifically depolymerized birch bark suberin (suberinic acids) and tall oil fatty acids. The polyols achieved a total renewable material content as high as 74%, with a suberinic acid content of 37%. Response surface modeling was employed to determine the optimal bio-polyol, blowing agents, and catalyst content, hence, optimizing the bio-based foam formulations. In addition, response surface modeling was applied to rigid PUR foam formulations based on commercially available petroleum-based polyols for comparison. The results, including apparent density (~40-44 kg/m3), closed cell content (~95%), compression strength (>0.2 MPa, parallel to the foaming direction), and thermal conductivity (~0.019 W/(m·K)), demonstrated that the suberinic acids-based rigid PUR foam exhibited competitive qualities in comparison to petroleum-based polyols. Remarkably, the bio-based rigid PUR foams comprised up to 29% renewable materials. These findings highlight the potential of suberinic acid-tall oil polyols as effective candidates for developing rigid PUR foams, offering promising solutions for sustainable insulation applications.

18.
Plant J ; 118(6): 1972-1990, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506334

RESUMEN

Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lípidos , Oryza , Proteínas de Plantas , Factores de Transcripción , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Lípidos/biosíntesis , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
19.
Ann Bot ; 133(7): 931-940, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38448365

RESUMEN

BACKGROUND AND AIMS: Internal root aeration is essential for root growth in waterlogged conditions. Aerenchyma provides a path for oxygen to diffuse to the roots. In most wetland species, including rice, a barrier to radial oxygen loss (ROL) allows more of the oxygen to diffuse to the root tip, enabling root growth into anoxic soil. Most dryland crops, including barley, do not form a root ROL barrier. We previously found that abscisic acid (ABA) signalling is involved in the induction of ROL barrier formation in rice during waterlogging. Although rice typically does not form a tight ROL barrier in roots in aerated conditions, an ROL barrier with suberized exodermis was induced by application of exogenous ABA. Therefore, we hypothesized that ABA application could also trigger root ROL barrier formation with hypodermal suberization in barley. METHODS: Formation of an ROL barrier was examined in roots in different exogenous ABA concentrations and at different time points using cylindrical electrodes and Methylene Blue staining. Additionally, we evaluated root porosity and observed suberin and lignin modification. Suberin, lignin and Casparian strips in the cell walls were observed by histochemical staining. We also evaluated the permeability of the apoplast to a tracer. KEY RESULTS: Application of ABA induced suberization and ROL barrier formation in the adventitious roots of barley. The hypodermis also formed lignin-containing Casparian strips and a barrier to the infiltration of an apoplastic tracer (periodic acid). However, ABA application did not affect root porosity. CONCLUSIONS: Our results show that in artificial conditions, barley can induce the formation of ROL and apoplastic barriers in the outer part of roots if ABA is applied exogenously. The difference in ROL barrier inducibility between barley (an upland species) and rice (a wetland species) might be attributable to differences in ABA signalling in roots in response to waterlogging conditions.


Asunto(s)
Ácido Abscísico , Hordeum , Lignina , Oxígeno , Raíces de Plantas , Hordeum/efectos de los fármacos , Hordeum/metabolismo , Hordeum/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Oxígeno/metabolismo , Lignina/metabolismo , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Lípidos
20.
Cell Rep ; 43(4): 113971, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38537644

RESUMEN

Sorghum bicolor is among the most important cereals globally and a staple crop for smallholder farmers in sub-Saharan Africa. Approximately 20% of sorghum yield is lost annually in Africa due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies are not singularly effective and integrated approaches are needed. Here, we demonstrate the functional potential of the soil microbiome to suppress Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation and with depletion of haustorium-inducing factors, compounds required for the initial stages of Striga infection. We further identify specific bacterial taxa that trigger the observed Striga-suppressive traits. Collectively, our study describes the importance of the soil microbiome in the early stages of root infection by Striga and pinpoints mechanisms of Striga suppression. These findings open avenues to broaden the effectiveness of integrated Striga management practices.


Asunto(s)
Microbiota , Raíces de Plantas , Microbiología del Suelo , Sorghum , Striga , Sorghum/microbiología , Sorghum/metabolismo , Striga/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Metaboloma , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA