Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microorganisms ; 11(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37894145

RESUMEN

Shiga toxins (Stxs), especially the Stx2a subtype, are the major virulence factors involved in enterohemorrhagic Escherichia coli (EHEC)-associated hemolytic uremic syndrome (eHUS), a life-threatening disease causing acute kidney injury, especially in children. After oral transmission and colonization in the gut, EHEC release Stx. Intracellular cleavage of the Stx A subunit, when followed by reduction, boosts the enzymatic activity that causes damage to targeted cells. This cleavage was assumed to be mostly mediated by furin during Stx intracellular trafficking. To investigate whether this cleavage could occur in the intestine, even prior to entering target cells, Stx2a A subunit structure (intact or cleaved) was characterized after its exposure to specific host factors present in human stool. The molecular weight of Stx2a A subunit/fragments was determined by immunoblotting after electrophoretic separation under reducing conditions. In this study, it was demonstrated that Stx2a is cleaved by certain human stool components. Trypsin and chymotrypsin-like elastase 3B (CELA3B), two serine proteases, were identified as potential candidates that can trigger the extracellular cleavage of Stx2a A subunit directly after its secretion by EHEC in the gut. Whether the observed cleavage indeed translates to natural infections and plays a role in eHUS pathogenesis has yet to be determined. If so, it seems likely that a host's protease profile could affect disease development by changing the toxin's biological features.

3.
Int Immunopharmacol ; 110: 109076, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35978517

RESUMEN

Immunotoxins are regarded as a type of targeted therapy for killing cells by highly potent bacterial, fungal or plant toxins. Shiga like toxins (SLTs) are a group of bacterial AB5 protein toxins that inhibit host cell protein synthesis through the removal of a single adenine residue from the 28S rRNA and lead to apoptosis. Here, we described the design and usage of a Stx-based immunotoxin that can induce the selective cytotoxicity and apoptosis in Fn-14-positive cells related to the colon and lung cancer. In the present study, the Stx2a-PE15-P4A8 fusion protein was expressed efficiently in E. coli (DE3) system when driven from inclusion bodies by 8 M urea. The Stx2a-PE15-P4A8 fusion protein was expressed efficiently in E. coli (DE3) system and then purified. The purified fusion protein could specifically target Fn-14 receptor existed on colon and lung cancer cell lines and suppress these cells in a dose-dependent manner. In addition, the protein was able to nearly 50 % of apoptotic cell death and maintains about 54 % of its stability after 24 h of incubation in mouse serum at 37 °C. Compared to PE38-P4A8 construct in our previous study, these results showed that the Stx2a-PE15-P4A8 construct can be an efficient therapeutic candidate for cancer immunotherapy.


Asunto(s)
Toxinas Bacterianas , Neoplasias Colorrectales , Inmunotoxinas , Neoplasias Pulmonares , Animales , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Neoplasias Colorrectales/tratamiento farmacológico , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunotoxinas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Ratones
4.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35805890

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Colon , Células Endoteliales/química , Células Epiteliales , Glicoesfingolípidos/análisis , Humanos , Riñón , Toxina Shiga
5.
Front Microbiol ; 12: 728116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566932

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) may cause severe disease mainly due to the ability to produce Shiga toxins (Stx) encoded on bacteriophages. In Norway, more than 30% of the reported cases with STEC O145:H25 develop hemolytic uremic syndrome (HUS), and most cases, with known travel history, acquired the infection domestically. To describe phage characteristics associated with high virulence, we extracted the Stx2a phage sequences from eight clinical Norwegian O145:H25 STEC to conduct in-depth molecular characterization using long and short read sequencing. The Stx2a phages were annotated, characterized, and compared with previously published Stx2a phages isolated from STEC of different serotypes. The Norwegian O145:H25 Stx2a phages showed high sequence identity (>99%) with 100% coverage. The Stx2a phages were located at the integration site yciD, were approximately 45 kbp long, and harbored several virulence-associated genes, in addition to stx2a, such as nanS and nleC. We observed high sequence identity (>98%) and coverage (≥94%) between Norwegian O145:H25 Stx2a phages and publicly available Stx2a phages from O145:H25 and O145:H28 STEC, isolated from HUS cases in the USA and a hemorrhagic diarrhea case from Japan, respectively. However, low similarity was seen when comparing the Norwegian O145:H25 Stx2a phage to Stx2a phages from STEC of other serotypes. In all the Norwegian O145:H25 STEC, we identified a second phage or remnants of a phage (a shadow phage, 61 kbp) inserted at the same integration site as the Stx2a phage. The shadow phage shared similarity with the Stx2a phage, but lacked stx2a and harbored effector genes not present in the Stx2a phage. We identified a conserved Stx2a phage among the Norwegian O145:H25 STEC that shared integration site with a shadow phage in all isolates. Both phage and shadow phage harbored several virulence-associated genes that may contribute to the increased pathogenicity of O145:H25 STEC.

6.
Int J Mol Sci ; 22(18)2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576167

RESUMEN

Shiga toxin (Stx) is released by enterohemorrhagic Escherichia coli (EHEC) into the human intestinal lumen and transferred across the colon epithelium to the circulation. Stx-mediated damage of human kidney and brain endothelial cells and renal epithelial cells is a renowned feature, while the sensitivity of the human colon epithelium towards Stx and the decoration with the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) is a matter of debate. Structural analysis of the globo-series GSLs of serum-free cultivated primary human colon epithelial cells (pHCoEpiCs) revealed Gb4Cer as the major neutral GSL with Cer (d18:1, C16:0), Cer (d18:1, C22:1/C22:0) and Cer (d18:1, C24:2/C24:1) accompanied by minor Gb3Cer with Cer (d18:1, C16:0) and Cer (d18:1, C24:1) as the dominant lipoforms. Gb3Cer and Gb4Cer co-distributed with cholesterol and sphingomyelin to detergent-resistant membranes (DRMs) used as microdomain analogs. Exposure to increasing Stx concentrations indicated only a slight cell-damaging effect at the highest toxin concentration of 1 µg/mL for Stx1a and Stx2a, whereas a significant effect was detected for Stx2e. Considerable Stx refractiveness of pHCoEpiCs that correlated with the rather low cellular content of the high-affinity Stx-receptor Gb3Cer renders the human colon epithelium questionable as a major target of Stx1a and Stx2a.


Asunto(s)
Colon/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Globósidos/metabolismo , Toxina Shiga/metabolismo , Trihexosilceramidas/metabolismo , Línea Celular , Células Cultivadas , Cromatografía en Capa Delgada , Glicoesfingolípidos/metabolismo , Humanos , Espectrometría de Masas , Sintaxina 1/metabolismo
7.
Toxins (Basel) ; 13(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34437399

RESUMEN

Tubular epithelial cells of the human kidney are considered as targets of Shiga toxins (Stxs) in the Stx-mediated pathogenesis of hemolytic-uremic syndrome (HUS) caused by Stx-releasing enterohemorrhagic Escherichia coli (EHEC). Analysis of Stx-binding glycosphingolipids (GSLs) of primary human renal proximal tubular epithelial cells (pHRPTEpiCs) yielded globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Investigation of detergent-resistant membranes (DRMs) and nonDRMs, serving as equivalents for the liquid-ordered and liquid-disordered membrane phase, respectively, revealed the prevalence of Gb3Cer and Gb4Cer together with cholesterol and sphingomyelin in DRMs, suggesting lipid raft association. Stx1a and Stx2a exerted strong cellular damage with half-maximal cytotoxic doses (CD50) of 1.31 × 102 pg/mL and 1.66 × 103 pg/mL, respectively, indicating one order of magnitude higher cellular cytotoxicity of Stx1a. Surface acoustic wave (SAW) real-time interaction analysis using biosensor surfaces coated with DRM or nonDRM fractions gave stronger binding capability of Stx1a versus Stx2a that correlated with the lower cytotoxicity of Stx2a. Our study underlines the substantial role of proximal tubular epithelial cells of the human kidney being associated with the development of Stx-mediated HUS at least for Stx1a, while the impact of Stx2a remains somewhat ambiguous.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Túbulos Renales Proximales/citología , Toxinas Shiga/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/metabolismo , Glicoesfingolípidos/metabolismo , Humanos , Trihexosilceramidas/metabolismo
8.
Toxins (Basel) ; 13(5)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925951

RESUMEN

AB5 protein toxins are produced by certain bacterial pathogens and are composed of an enzymatically active A-subunit and a B-subunit pentamer, the latter being responsible for cell receptor recognition, cellular uptake, and transport of the A-subunit into the cytosol of eukaryotic target cells. Two members of the AB5 toxin family were described in Shiga toxin-producing Escherichia coli (STEC), namely Shiga toxin (Stx) and subtilase cytotoxin (SubAB). The functional paradigm of AB toxins includes the B-subunit being mandatory for the uptake of the toxin into its target cells. Recent studies have shown that this paradigm cannot be maintained for SubAB, since SubA alone was demonstrated to intoxicate human epithelial cells in vitro. In the current study, we raised the hypothesis that this may also be true for the A-subunit of the most clinically relevant Stx-variant, Stx2a. After separate expression and purification, the recombinant Stx2a subunits StxA2a-His and StxB2a-His were applied either alone or in combination in a 1:5 molar ratio to Vero B4, HeLa, and HCT-116 cells. For all cell lines, a cytotoxic effect of StxA2a-His alone was detected. Competition experiments with Stx and SubAB subunits in combination revealed that the intoxication of StxA2a-His was reduced by addition of SubB1-His. This study showed that the enzymatic subunit StxA2a alone was active on different cells and might therefore play a yet unknown role in STEC disease development.


Asunto(s)
Toxina Shiga/toxicidad , Animales , Chlorocebus aethiops , Células Epiteliales/efectos de los fármacos , Células HCT116/efectos de los fármacos , Células HeLa/efectos de los fármacos , Humanos , Proteínas Recombinantes , Toxina Shiga/química , Toxina Shiga/aislamiento & purificación , Toxina Shiga II , Células Vero/efectos de los fármacos
9.
In Silico Pharmacol ; 9(1): 19, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643767

RESUMEN

Today, the targeted therapies like the use of immunotoxins are increased which targeted specific antigens or receptors on the surface of tumor cells. Fibroblast growth factor-inducible 14 (Fn14) is a cytokine receptor which involves several intercellular signaling pathways and can be highly expressed in the surface of cancer cells. Since the cleavage of enzymatic domain of Pseudomonas exotoxin A (PE) occurs in one step by furin protease, we fused enzymatic subunit of Shiga-like toxin type 2a (Stx2a) with domain II and a portion of Ib of PE to increase the toxicity of Stx. Then, we genetically fused the Fv fragment of an anti-Fn14 monoclonal antibody (P4A8) to STX2a-PE15 and evaluated the STX2a-PE15-P4A8 chimeric protein as a new immunotoxin candidate. In silico analysis showed that the STX2a-PE15-P4A8 is a stable chimeric protein with high affinity to the Fn14 receptor. Despite, the STX2a-PE15-P4A8 can be bind to the B cell receptor, but it has been weakly presented by major histocompatibility complex molecules II (MHC-II). So, it may have a little immunogenicity. On the basis of our in-silico studies we predict that STX2a-PE15-P4A8 can be a good candidate for cancer immunotherapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40203-021-00079-w.

10.
Toxins (Basel) ; 13(2)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673393

RESUMEN

Human kidney epithelial cells are supposed to be directly involved in the pathogenesis of the hemolytic-uremic syndrome (HUS) caused by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC). The characterization of the major and minor Stx-binding glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), respectively, of primary human renal cortical epithelial cells (pHRCEpiCs) revealed GSLs with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Using detergent-resistant membranes (DRMs) and non-DRMs, Gb3Cer and Gb4Cer prevailed in the DRM fractions, suggesting their association with microdomains in the liquid-ordered membrane phase. A preference of Gb3Cer and Gb4Cer endowed with C24:0 fatty acid accompanied by minor monounsaturated C24:1-harboring counterparts was observed in DRMs, whereas the C24:1 fatty acid increased in relation to the saturated equivalents in non-DRMs. A shift of the dominant phospholipid phosphatidylcholine with saturated fatty acids in the DRM to unsaturated species in the non-DRM fractions correlated with the GSL distribution. Cytotoxicity assays gave a moderate susceptibility of pHRCEpiCs to the Stx1a and Stx2a subtypes when compared to highly sensitive Vero-B4 cells. The results indicate that presence of Stx-binding GSLs per se and preferred occurrence in microdomains do not necessarily lead to a high cellular susceptibility towards Stx.


Asunto(s)
Células Epiteliales/metabolismo , Globósidos/metabolismo , Corteza Renal/metabolismo , Toxina Shiga I/toxicidad , Toxina Shiga II/toxicidad , Trihexosilceramidas/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Células Epiteliales/patología , Infecciones por Escherichia coli/microbiología , Síndrome Hemolítico-Urémico/microbiología , Humanos , Corteza Renal/patología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología , Cultivo Primario de Células , Unión Proteica , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Escherichia coli Shiga-Toxigénica/patogenicidad , Células Vero
11.
Zoonoses Public Health ; 67(1): 44-53, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31868306

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double-agar-layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H- (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a /stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.


Asunto(s)
Bacteriófagos/fisiología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Escherichia coli Shiga-Toxigénica/virología , Alquilantes/farmacología , Animales , Bovinos , Humanos , Mitomicina/farmacología , Profagos , ARN Bacteriano , Toxina Shiga , Toxina Shiga II/química , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/efectos de los fármacos , Escherichia coli Shiga-Toxigénica/genética
12.
APMIS ; 127(10): 671-680, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31344276

RESUMEN

Regardless of the communal impact of Shiga toxins, till today neither a specific treatment nor licensed vaccine is available. Lactococcus lactis (L. lactis), generally regarded as safe organism, is well known to provide a valuable approach regarding the oral delivery of vaccines. This study was undertaken to evaluate the protective efficacy of Stx2a1 expressed in nisin-inducible L. lactis, against Shiga toxins (Stx1, Stx2) in mouse model. Oral immunization of BALB/c mice with LL-Stx2a1 elicited significant serum antibody titer with elevated fecal and serum IgA, along with minimized intestinal and kidney damage resulting in survival of immunized animals at 84% and 100% when challenged with 10 × LD50 of Escherichia coli O157 and Shigella dysenteriae toxins, respectively. HeLa cells incubated with immune sera and toxin mixture revealed high neutralizing capacity with 90% cell survivability against both the toxins. Mice immunized passively with both toxins and antibody mixture survived the observation period of 15 days, and the controls administered with sham sera and toxins were succumbed to death within 3 days. Our results revealed protective efficacy and toxin neutralization ability of LL-Stx2a1, proposing it as an oral vaccine candidate against Shiga toxicity mediated by E. coli O157 and S. dysenteriae.


Asunto(s)
Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Escherichia coli O157/inmunología , Intoxicación/prevención & control , Toxina Shiga/inmunología , Toxina Shiga/toxicidad , Shigella dysenteriae/inmunología , Administración Oral , Animales , Anticuerpos Antibacterianos/administración & dosificación , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/sangre , Antitoxinas/administración & dosificación , Antitoxinas/sangre , Vacunas Bacterianas/genética , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Portadores de Fármacos/administración & dosificación , Escherichia coli O157/genética , Vectores Genéticos/administración & dosificación , Células HeLa , Humanos , Lactococcus lactis/genética , Ratones , Ratones Endogámicos BALB C , Toxina Shiga/genética , Shigella dysenteriae/genética , Análisis de Supervivencia , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
13.
BMC Genomics ; 20(1): 504, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208335

RESUMEN

BACKGROUND: Enterohemorrhagic Escherichia coli (E. coli) are intestinal pathogenic bacteria that cause life-threatening disease in humans. Their cardinal virulence factor is Shiga toxin (Stx), which is encoded on lambdoid phages integrated in the chromosome. Stx phages can infect and lysogenize susceptible bacteria, thus either increasing the virulence of already pathogenic bacterial hosts or transforming commensal strains into potential pathogens. There is increasing evidence that Stx phage-encoded factors adaptively regulate bacterial host gene expression. Here, we investigated the effects of Stx phage carriage in E. coli K-12 strain MG1655. We compared the transcriptome and phenotype of naive MG1655 and two lysogens carrying closely related Stx2a phages: ϕO104 from the exceptionally pathogenic 2011 E. coli O104:H4 outbreak strain and ϕPA8 from an E. coli O157:H7 isolate. RESULTS: Analysis of quantitative RNA sequencing results showed that, in comparison to naive MG1655, genes involved in mixed acid fermentation were upregulated, while genes encoding NADH dehydrogenase I, TCA cycle enzymes and proteins involved in the transport and assimilation of carbon sources were downregulated in MG1655::ϕO104 and MG1655::ϕPA8. The majority of the changes in gene expression were found associated with the corresponding phenotypes. Notably, the Stx2a phage lysogens displayed moderate to severe growth defects in minimal medium supplemented with single carbon sources, e.g. galactose, ribose, L-lactate. In addition, in phenotype microarray assays, the Stx2a phage lysogens were characterized by a significant decrease in the cell respiration with gluconeogenic substrates such as amino acids, nucleosides, carboxylic and dicarboxylic acids. In contrast, MG1655::ϕO104 and MG1655::ϕPA8 displayed enhanced respiration with several sugar components of the intestinal mucus, e.g. arabinose, fucose, N-acetyl-D-glucosamine. We also found that prophage-encoded factors distinct from CI and Cro were responsible for the carbon utilization phenotypes of the Stx2a phage lysogens. CONCLUSIONS: Our study reveals a profound impact of the Stx phage carriage on E. coli carbon source utilization. The Stx2a prophage appears to reprogram the carbon metabolism of its bacterial host by turning down aerobic metabolism in favour of mixed acid fermentation.


Asunto(s)
Carbono/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Regulación Bacteriana de la Expresión Génica , Profagos/fisiología , Toxina Shiga/metabolismo , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/virología , Perfilación de la Expresión Génica , Fenotipo , Profagos/metabolismo
14.
Emerg Infect Dis ; 24(12): 2219-2227, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30457544

RESUMEN

Among Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 strains, those producing Stx2a cause more severe diseases. Atypical STEC O157:H7 strains showing a ß-glucuronidase-positive phenotype (GP STEC O157:H7) have rarely been isolated from humans, mostly from persons with asymptomatic or mild infections; Stx2a-producing strains have not been reported. We isolated, from a patient with bloody diarrhea, a GP STEC O157:H7 strain (PV15-279) that produces Stx2a in addition to Stx1a and Stx2c. Genomic comparison with other STEC O157 strains revealed that PV15-279 recently emerged from the stx1a/stx2c-positive GP STEC O157:H7 clone circulating in Japan. Major virulence genes are shared between typical (ß-glucuronidase-negative) and GP STEC O157:H7 strains, and the Stx2-producing ability of PV15-279 is comparable to that of typical STEC O157:H7 strains; therefore, PV15-279 presents a virulence potential similar to that of typical STEC O157:H7. This study reveals the importance of GP O157:H7 as a source of highly pathogenic STEC clones.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Genoma Bacteriano , Genómica , Glucuronidasa/metabolismo , Toxina Shiga II/biosíntesis , Biología Computacional/métodos , Elementos Transponibles de ADN , Escherichia coli O157/clasificación , Escherichia coli O157/efectos de los fármacos , Genómica/métodos , Mitomicina/farmacología , Filogenia , Polimorfismo de Nucleótido Simple , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética
15.
Int J Med Microbiol ; 308(7): 969-976, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30064820

RESUMEN

Escherichia coli-induced hemolytic uremic syndrome (eHUS) is a life-threatening complication of infection with Shiga toxin (Stx), in particular Stx2a-producing Escherichia coli. Enhanced coagulation activation with formation of microthrombi seems to be a key event in development of eHUS. Platelet activation has been postulated as a possible, but controversially debated mechanism. The present study investigated the effect of Stx2a on plasmatic coagulation and platelets. Binding studies were initially performed with ELISA and co-immunoprecipitation and supported by quartz crystal microbalance with dissipation monitoring (QCM-D). Antithrombin (AT) activity was measured using the automated BCS XP® system. ROTEM® was used for functional coagulation testing. Platelet binding and activation was studied with FACS and light-transmission aggregometry. We found binding of Stx2a to AT, an important inhibitor of blood coagulation, but only a mild albeit significant reduction of AT activity against FXa in the presence of Stx2a. QCM-D analysis also showed binding of Stx2a to heparin and an impaired binding of AT to Stx2a-bound heparin. ROTEM® using Stx2a-treated platelet-poor plasma revealed a significant, but only moderate shortening of clotting time. Neither binding nor activation of platelets by Stx2a could be demonstrated. In summary, data of this study suggest that Stx2a binds to AT, but does not induce major effects on plasmatic coagulation. In addition, no interaction with platelets occurred. The well-known non-beneficial administration of heparin in eHUS patients could be explained by the interaction of Stx2a with heparin.


Asunto(s)
Antitrombinas/metabolismo , Coagulación Sanguínea/fisiología , Heparina/metabolismo , Agregación Plaquetaria/inmunología , Toxina Shiga II/metabolismo , Plaquetas/inmunología , Síndrome Hemolítico-Urémico/microbiología , Humanos , Unión Proteica/fisiología , Escherichia coli Shiga-Toxigénica/patogenicidad
16.
Front Microbiol ; 9: 1325, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29973923

RESUMEN

Intestinal colonization by the foodborne pathogen Escherichia coli O157:H7 leads to serious disease symptoms, including hemolytic uremic syndrome (HUS) and hemorrhagic colitis (HC). Synthesis of one or more Shiga toxins (Stx) is essential for HUS and HC development. The genes encoding Stx, including Stx2a, are found within a lambdoid prophage integrated in the E. coli O157:H7 chromosome. Enhanced Stx2a expression was reported when specific non-pathogenic E. coli strains were co-cultured with E. coli O157:H7, and it was hypothesized that this phenotype required the non-pathogenic E. coli to be sensitive to stx-converting phage infection. We tested this hypothesis by generating phage resistant non-pathogenic E. coli strains where bamA (an essential gene and Stx phage receptor) was replaced with an ortholog from other species. Such heterologous gene replacement abolished the ability of the laboratory strain E. coli C600 to enhance toxin production when co-cultured with E. coli O157:H7 strain PA2, which belongs to the hypervirulent clade 8. The extracellular loops of BamA (loop 4, 6, 7) were further shown to be important for infection by stx2a-converting phages. However, similar gene replacement in another commensal E. coli, designated 1.1954, revealed a bamA-independent mechanism for toxin amplification. Toxin enhancement by 1.1954 was not the result of phage infection through an alternative receptor (LamB or FadL), lysogen formation by stx2a-converting phages, or the production of a secreted molecule. Collectively, these data suggest that non-pathogenic E. coli can enhance toxin production through at least two mechanisms.

17.
Toxins (Basel) ; 9(11)2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29068380

RESUMEN

Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22-C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.


Asunto(s)
Células Epiteliales/química , Trihexosilceramidas/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colon/citología , Células Epiteliales/efectos de los fármacos , Humanos , Toxina Shiga II/toxicidad
18.
Int J Med Microbiol ; 306(2): 123-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26935026

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens associated with human diseases. In Argentina, O157:H7 is the dominant serotype in hemolytic uremic syndrome (HUS) cases. Previously, we have described the almost exclusive circulation of human E. coli O157 strains belonging to the hypervirulent clade 8 in Neuquén Province. The aim of the present study was to investigate, by a broad molecular characterization, if this particular distribution of E. coli O157 clades in Neuquén is similar to the situation in other regions of the country and if it may be originated in a similar profile in cattle, its main reservoir. Two-hundred and eighty O157 strains (54 bovine and 226 human) isolated between 2006 and 2008 in different regions of Argentina were studied. All strains harbored rfbO157, fliCH7, eae, and ehxA genes. The predominant genotype was stx2a/stx2c in human (76.1%) and bovine (55.5%) strains. All human isolates tested by Lineage-Specific Polymorphism Assay (LSPA-6), were lineage I/II; among bovine strains, 94.1% belonged to lineage I/II and 5.9% to lineage I. No LSPA-6 lineage II isolates were detected. Single nucleotide polymorphism (SNP) analysis has revealed the existence of nine clade phylogenetic groups. In our clinical strains collection, 87.6% belonged to the hypervirulent clade 8, and 12.4% were classified as clade 4/5. In bovine isolates, 59.3% strains were clade 8, 33.3% clade 4/5 and 7.4% clade 3. More than 80% of human strains showed the presence of 6 of the 7 virulence determinants described in the TW14359 O157 strain associated with the raw spinach outbreak in the U.S. in 2006. More than 80% of bovine strains showed the presence of 3 of these factors. The q933 allele, which has been related to high toxin production, was present in 98.2% of clinical strains and 75.9% of the bovine isolates. The molecular characterization of human STEC O157 strains allows us to conclude that the particular situation previously described for Neuquén Province, may actually be a characteristic of the whole country. These genetic features are quite similar to those observed in the bovine reservoir and may be derived from it. This data confirms that, unlike the rest of the world, in Argentina most of the STEC O157 strains present in cattle may cause human infections of varying severity and the marked virulence described for these strains may be related to the high incidence of HUS in our country.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Síndrome Hemolítico-Urémico/microbiología , Alelos , Animales , Argentina/epidemiología , Bovinos , Enfermedades de los Bovinos/epidemiología , Reservorios de Enfermedades , Electroforesis en Gel de Campo Pulsado , Infecciones por Escherichia coli/epidemiología , Escherichia coli O157/clasificación , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/patogenicidad , Genotipo , Síndrome Hemolítico-Urémico/epidemiología , Humanos , Fenotipo , Polimorfismo Genético , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Virulencia/análisis
19.
J Infect Dis ; 213(8): 1271-9, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26743841

RESUMEN

BACKGROUND: Shiga toxin (Stx) is the primary virulence factor of Stx-producing Escherichia coli (STEC). STEC can produce Stx1a and/or Stx2a, which are antigenically distinct. However, Stx2a-producing STEC are associated with more severe disease than strains producing both Stx1a and Stx2a. METHODS AND RESULTS: To address the hypothesis that the reason for the association of Stx2a with more severe disease is because Stx2a crosses the intestinal barrier with greater efficiency that Stx1a, we covalently labeled Stx1a and Stx2a with Alexa Fluor 750 and determined the ex vivo fluorescent intensity of murine systemic organs after oral intoxication. Surprisingly, both Stxs exhibited similar dissemination patterns and accumulated in the kidneys. We next cointoxicated mice to determine whether Stx1a could impede Stx2a. Cointoxication resulted in increased survival and an extended mean time to death, compared with intoxication with Stx2a only. The survival benefit was dose dependent, with the greatest effect observed when 5 times more Stx1a than Stx2a was delivered, and was amplified when Stx1a was delivered 3 hours prior to Stx2a. Cointoxication with an Stx1a active site toxoid also reduced Stx2a toxicity. CONCLUSIONS: These studies suggest that Stx1a reduces Stx2a-mediated toxicity, a finding that may explain why STEC that produce only Stx2a are associated with more severe disease than strains producing Stx1a and Stx2a.


Asunto(s)
Toxina Shiga I/farmacocinética , Toxina Shiga I/toxicidad , Toxina Shiga II/antagonistas & inhibidores , Toxina Shiga II/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Administración Oral , Animales , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Ratones , Ratones Endogámicos BALB C , Toxina Shiga I/administración & dosificación , Toxina Shiga II/administración & dosificación , Escherichia coli Shiga-Toxigénica , Análisis de Supervivencia
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-563403

RESUMEN

Objective To prepare high-titer monoclonal antibodies against STX2A1 subunit of enterohemorrhagic E.coli(EHEC) O157∶H7.Methods BALB/c mice were immunized with GST-STX2A1 fusion protein and the spleen cells of BALB/c mice which were not immunized were used as feeder cells.Hybridoma technique,natural STX2A protein and ELISA test were used to prepare and screen the hybridoma cell lines of monoclonal antibodies against STX2A1.The ascites developed by injecting the hybridoma cells into abdominal cavity of the BALB/c mice and was purified with Protein A-Sepharose.The subclasses and isotypes were identified by mouse monoclonal antibody isotyping kit.The antigenic epitopes that can be recognized by STX2-1A3,STX2-1E10 and STX2-3A7 were analyzed by the ELISA additivity test.Results Three hybridoma cell strains were obtained and named as STX2-1A3,STX2-1E10 and STX2-3A7,respectively,all of which produced monoclonal antibodies specifically against STX2A1.The isotypes of the monoclonal antibodies were IgG1?,IgG1?,and IgG3? and the affinity constant was 5.76 ?109,1.21 ?109 and 3.97 ?108,respectively.Conclusion We have successfully prepared three hybridoma cell strains which secrete high-titer and highly specific monoclonal antibodies against STX2A1.Our study provides a basis for researching the early diagnosis,prevention and cure of the disease induced by EHEC O157∶H7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA