Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 410: 110479, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37977080

RESUMEN

Listeria (L.) monocytogenes is of global concern for food safety as the listeriosis-causing pathogen is widely distributed in the food processing environments, where it can survive for a long time. Frozen vegetables contaminated with L. monocytogenes were recently identified as the source of two large listeriosis outbreaks in the EU and US. So far, only a few studies have investigated the occurrence and behavior of Listeria in frozen vegetables and the associated processing environment. This study investigates the occurrence of L. monocytogenes and other Listeria spp. in a frozen vegetable processing environment and in frozen vegetable products. Using whole genome sequencing (WGS), the distribution of sequence types (MLST-STs) and core genome sequence types (cgMLST-CT) of L. monocytogenes were assessed, and in-house clones were identified. Comparative genomic analyses and phenotypical characterization of the different MLST-STs and isolates were performed, including growth ability under low temperatures, as well as survival of freeze-thaw cycles. Listeria were widely disseminated in the processing environment and five in-house clones namely ST451-CT4117, ST20-CT3737, ST8-CT1349, ST8-CT6243, ST224-CT5623 were identified among L. monocytogenes isolates present in environmental swab samples. Subsequently, the identified in-house clones were also detected in product samples. Conveyor belts were a major source of contamination in the processing environment. A wide repertoire of stress resistance markers supported the colonization and survival of L. monocytogenes in the frozen vegetable processing facility. The presence of ArgB was significantly associated with in-house clones. Significant differences were also observed in the growth rate between different MLST-STs at low temperatures (4 °C and 10 °C), but not between in-house and non-in-house isolates. All isolates harbored major virulence genes such as full length InlA and InlB and LIPI-1, yet there were differences between MLST-STs in the genomic content. The results of this study demonstrate that WGS is a strong tool for tracing contamination sources and transmission routes, and for identifying in-house clones. Further research targeting the co-occurring microbiota and the presence of biofilms is needed to fully understand the mechanism of colonization and persistence in a food processing environment.


Asunto(s)
Listeria monocytogenes , Listeria , Listeriosis , Verduras , Tipificación de Secuencias Multilocus , Microbiología de Alimentos , Listeriosis/epidemiología , Listeria/genética
2.
Front Plant Sci ; 13: 999433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275545

RESUMEN

Paeonia lactiflora Pall. is known as the king of herbaceous flowers with high ornamental and precious medicinal value. However, the lack of a stable genetic transformation system has greatly affected the research of gene function in P. lactiflora. The Agrobacterium-mediated transient gene expression is a powerful tool for the characterization of gene function in plants. In this study, the seedlings of P. lactiflora were used as the transformation receptor materials, and the efficient transient transformation system with a GUS reporter gene was successfully established by Agrobacterium harboring pCAMBIA1301. To optimize the system, we investigated the effects of germination time, Agrobacterium cell density, infection time, acetosyringone (AS) concentration, co-culture time, negative pressure intensity, Tween-20 concentration and different receptor materials on the transient transformation efficiency of P. lactiflora. The results showed that the highest transient transformation efficiency (93.3%) could be obtained when seedlings in 2-3 cm bud length were subjected to 12 h infection of resuspension solution comprising 1.2 OD600 Agrobacterium, 200 µM AS and 0.01% Tween-20 under 10 of negative pressure intensity followed by 3 days of co-culture in darkness condition. This method is more suitable for the study of gene function in P. lactiflora. Subsequently, stress resistance genes PlGPAT, PlDHN2 and PlHD-Zip were used to verify the effectiveness of this transformation system. These results can provide critical information for identification of key genes in non-model plants, such as P. lactiflora, and promote the development of molecular biology research for P. lactiflora.

3.
Microb Genom ; 7(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33166245

RESUMEN

Species belonging to the family Lactobacillaceae are found in highly diverse environments and play an important role in fermented foods and probiotic products. Many of these species have been individually reported to harbour plasmids that encode important genes. In this study, we performed comparative genomic analysis of publicly available data for 512 plasmids from 282 strains represented by 51 species of this family and correlated the genomic features of plasmids with the ecological niches in which these species are found. Two-thirds of the species had at least one plasmid-harbouring strain. Plasmid abundance and GC content were significantly lower in vertebrate-adapted species as compared to nomadic and free-living species. Hierarchical clustering highlighted the distinct nature of plasmids from the nomadic and free-living species than those from the vertebrate-adapted species. EggNOG-assisted functional annotation revealed that genes associated with transposition, conjugation, DNA repair and recombination, exopolysaccharide production, metal ion transport, toxin-antitoxin system, and stress tolerance were significantly enriched on the plasmids of the nomadic and in some cases nomadic and free-living species. On the other hand, genes related to anaerobic metabolism, ABC transporters and the major facilitator superfamily were overrepresented on the plasmids of the vertebrate-adapted species. These genomic signatures correlate with the comparatively nutrient-depleted, stressful and dynamic environments of nomadic and free-living species and nutrient-rich and anaerobic environments of vertebrate-adapted species. Thus, these results indicate the contribution of the plasmids in the adaptation of lactobacilli to their respective habitats. This study also underlines the potential application of these plasmids in improving the technological and probiotic properties of lactic acid bacteria.


Asunto(s)
Lactobacillaceae/genética , Plásmidos/genética , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reparación del ADN , Genómica , Lactobacillaceae/clasificación , Lactobacillaceae/fisiología , Filogenia , Plásmidos/metabolismo , Recombinación Genética , Especificidad de la Especie
4.
Front Plant Sci ; 11: 592, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508859

RESUMEN

For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA