Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Polymers (Basel) ; 16(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274116

RESUMEN

The objective of this study is to investigate the storage stability and rheological property of bio-oil/lignin composite-modified asphalt. The composite-modified asphalt with different proportions of bio-oil was prepared and cured at 105 °C, 135 °C, and 165 °C for 24 h and 48 h. The storage stability of the composite-modified asphalt was evaluated based on the softening point difference, the storage stability index derived from rotational viscosity, the segregation rate based on temperature sweep, and the non-recoverable creep compliance measured through the Multiple Stress Creep Recovery test. The storage stability of bio-oil/lignin composite-modified asphalt was evaluated through testing and analysis of its infrared spectroscopy and scanning electron microscopy before and after thermal storage. The research results indicate that the maximum difference in softening point is 0.9 °C, and the calculated storage stability index is generally below 0.1. The maximum value of the segregation rate is 0.43, indicating excellent storage stability of the bio-oil/lignin composite-modified asphalt. According to the results from infrared spectroscopy, no chemical reactions occurred during the storage process of the composite-modified asphalt. The scanning electron microscope confirmed that the samples became more stable after 48 h of storage.

2.
Foods ; 13(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39272512

RESUMEN

Anthocyanins (ANCs) are water-soluble pigments that are useful as nutraceuticals due to their health benefits. This study was performed to evaluate the storage stability of purified and crude red grape ANCs in Raha Sweet (RS) during storage and to evaluate its sensory properties. ANCs were extracted from red grape pomace and purified with a macroporous resin. RS was prepared and colored with a synthetic food dye, Carmoisine (control), and ANCs (crude and purified). Pigments were extracted from RS weekly for a period of seven weeks and the absorbance was read spectrophotometrically. RS colored with ANCs was evaluated for its color and other sensory properties against another RS colored with the control. Results showed that the degradation of ANCs in RS followed the first-order reaction model, unlike the control, which showed no degradation during storage. The half-life of crude ANCs was three times higher than that of the purified ones, and RS colored with ANCs received a significantly (p < 0.05) lower score for color than that of RS colored with the control. ANCs could provide the food industry with a natural alternative to synthetic dyes to color foods with high sugar content that are stored for a short period of time.

3.
Food Chem X ; 23: 101689, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39157656

RESUMEN

Lycopene, a carotenoid with numerous physiological benefits, particularly in its Z-isomer form, faces challenges in its application due to low chemical stability. To address this limitation, high internal phase emulsion was successfully synthesized using ovalbumin-chitosan complexes. The aim was to enhance the stability of lycopene including Z-lycopene. The solubility, particle size, ζ-potential and uniformity of the mixture were dependent on pH value and biopolymer proportion. Notably, optimal ovalbumin-chitosan complex formation occurred at pH 2.5 with a ratio of 4:1 resulting in the highest solubility and optimal uniformity which contributed to its superior emulsification properties. Evaluation of encapsulating efficiency and loading amount revealed 98.19% and 1.7661 mg/g respectively for lycopene in ovalbumin-chitosan stabilized emulsions, inhibiting the transformation from Z-lycopene to (all-E)-lycopene. The encapsulated lycopene possessed UV stability where retention rate remained high at 81.86%. The retention rate was up to 65.37% and 41.82% at 45 °C and 80 °C, respectively.

4.
J Control Release ; 374: 280-292, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39142355

RESUMEN

Lipid nanoparticle (LNP) formulation plays a vital role in RNA vaccine delivery. However, further optimisation of self-amplifying RNA (saRNA) vaccine formulation could help enhance seroconversion rates in humans and improve storage stability. Altering either the ionisable or helper lipid can alter the characteristics and performance of formulated saRNA through the interplay of the phospholipid's packing parameter and the geometrical shape within the LNP membrane. In this study, we compared the impact of three helper lipids (DSPC, DOPC, or DOPE) used with two different ionisable lipids (MC3 and C12-200) on stability, transfection efficiency and the inflammation and immunogenicity of saRNA. While helper lipid identity altered saRNA expression across four cell lines in vitro, this was not predictive of an ex vivo or in vivo response. The helper lipid used influenced LNP storage where DSPC provided the best stability profile over four weeks at 2-8 °C. Importantly, helper lipid impact on LNP storage stability was the best predictor of expression in human skin explants, where C12-200 in combination with DSPC provided the most durable expression. C12-200 LNPs also improved protein expression (firefly luciferase) and humoral responses to a SARS-CoV-2 spike saRNA vaccine compared to MC3 LNPs, where the effect of helper lipids was less apparent. Nevertheless, the performance of C12-200 in combination with DSPC appears optimal for saRNA when balancing preferred storage stability requirements against in vivo and ex vivo potency. These data suggest that helper lipid influences the stability and functionality of ionisable lipid nanoparticle-formulated saRNA.

5.
Talanta ; 279: 126634, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121553

RESUMEN

Macroporous three-dimensional (3D) framework structured melamine foam-based Enzyme-Linked Immunosorbent Assay (f-ELISA) biosensors were developed for rapid, reliable, sensitive, and on-site detection of trace amount of biomolecules and chemicals. Various ligands can be chemically immobilized onto the melamine foam, which brings in the possibility of working with antibodies, nanobodies, and peptides, respectively, as affinity probes for f-ELISA biosensors with improved stability. Different chemical reagents can be used to modify the foam materials, resulting in varied reactivities with antibodies, nanobodies, and peptides. As a result, the f-ELISA sensors produced from these modified foams exhibit varying levels of sensitivity and performance. This study demonstrated that the chemical reagents used for immobilizing antibodies, nanobodies, and peptides could affect the sensitivities of the f-ELISA sensors, and their storage stabilities under different temperatures varied depending on the sensing probes used, with f-ELISA sensors employing nanobodies as probes exhibiting the highest stability. This study not only showcases the versatility of the f-ELISA system but also opens new avenues for developing cost-effective, portable, and user-friendly diagnostic tools with optimized sensitivity and stability.


Asunto(s)
Técnicas Biosensibles , Ensayo de Inmunoadsorción Enzimática , Anticuerpos de Dominio Único , Triazinas , Triazinas/análisis , Triazinas/química , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Técnicas Biosensibles/métodos , Péptidos/química , Anticuerpos/inmunología , Anticuerpos/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química , Límite de Detección
6.
Int J Food Sci ; 2024: 8864560, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135739

RESUMEN

The consumption of gluten-free corn cookies is becoming very popular among nonceliac and celiac individuals. However, the absence of gluten and other nutrients in corn generally leads to cookies of lower quality in terms of nutritional value, texture, colour, and shelf life. To improve the quality characteristics of corn cookies, this study investigated the effect of incorporating an underutilised herb (Urtica dioica L. leaves) on its nutritional and physical properties. Stinging nettle leaf flour was incorporated at different levels (5%, 10%, 15%, and 20%) and compared with a control (100% corn cookies). The storage stability of the formulated corn cookies was also investigated at room and frozen (-18 ± 2°C) temperature. The incorporation of stinging nettle leaf flour increased (p < 0.05) the ash and protein content of corn cookies from 0.32% (control) to 2.56% (20% stinging nettle leaf flour incorporation) and 6.44% (control) to 21.52% (20% stinging nettle leaf flour incorporation), respectively. After in vitro starch digestion, the total phenolic content (TPC) and antioxidant activity (AA) also increased approximately 27 and seven times, respectively, and the estimated glycaemic index (GI) (eGI) decreased (p < 0.05) from 48.60% (control) to 33.18% (20% stinging nettle incorporated). Shelf life characteristics (water activity, peroxide value (PV), and microbial count) of formulated corn cookies were within acceptable limits for human consumption upon storage for 6 months. The findings indicated that stinging nettle leaves could serve as a potential food ingredient in gluten-free bakery products, particularly where low GI foods are desirable.

7.
Int J Biol Macromol ; 276(Pt 1): 133736, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992543

RESUMEN

Pea peptides can lead to degradation through oxidation, deamidation, hydrolysis, or cyclization during production, processing, and storage, which in turn limit their broader application. To stabilize pea peptides, this study employed spray drying technology to create a pea peptide micro-encapsule using maltodextrin, gum tragacanth, and pea peptides. Four key factors, including polysaccharide ratio, glycopeptide ratio, solid-liquid ratio, and inlet temperature, were optimized to enhance the antioxidant properties of the pea peptide micro-encapsule. The results indicated that the utilization of maltodextrin and gum tragacanth significantly improves the storage stability and antioxidant activity of pea peptides. Moreover, optimal storage stability for pea peptides was achieved with a polysaccharide ratio of 9:1, a glycopeptide ratio of 10:1, a solid-liquid ratio of 4:40, and an inlet temperature of 180 °C. After 60 days of storage, the encapsulated pea peptides maintained 70.22 %, 25.19 %, and 40.32 % for scavenging abilities to hydroxyl radical, superoxide anion, and ABTS radical, respectively. In contrast, the unencapsulated pea peptides showed a decline to 47.02 %, 0 %, and 24.46 % in the same antioxidant activities after storage. These findings underscore the potential of spray drying technology to enhance the functional properties of pea peptides for various applications.


Asunto(s)
Depuradores de Radicales Libres , Proteínas de Guisantes , Polisacáridos , Tragacanto , Depuradores de Radicales Libres/química , Polisacáridos/química , Tragacanto/química , Proteínas de Guisantes/química , Péptidos/química , Antioxidantes/química , Pisum sativum/química , Temperatura , Radicales Libres/química , Estabilidad de Medicamentos
8.
Food Chem X ; 23: 101548, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38974200

RESUMEN

Granaticins are natural pigments derived from microorganisms with promising bioactivity. However, their practical applications have been restricted due to inherent instability. To improve the stability of granaticins from the novel strain Streptomyces vilmorinianum YP1, microcapsules were prepared using gum Arabic (GA) by a freeze-drying method. The optimal parameters for microencapsulation were determined using response surface methodology. Under the optimal conditions (GA 9.2% (v/v), a wall/-core ratio 4.8 (w/w), encapsulating temperature 29 °C), the maximum encapsulation efficiency achieved was 93.64%. The microcapsules were irregular single crystals with an average particle size of 206.37 ± 2.51 nm. Stability testing indicated improved stability of the microencapsulated granaticins. Notably, granaticnic B retention increased by 17.0% and 6.6% after exposure to sunlight and storage at 4 °C, respectively. These finding suggest that GA as a well material significantly enhances the stability of granaticins from S. vilmorinianum YP1, facilitating their potential applications.

9.
Int J Biol Macromol ; 275(Pt 1): 133674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971290

RESUMEN

In recent years, the utilization of aerogel templates in oleogels to replace animal fats has garnered considerable attention due to health concerns. This study employed a "fiber-particle core-shell nanostructure model" to combine sodium carboxymethylcellulose (CMCNa) and soy protein isolate (SPI) or SPI hydrolysate (SPIH), and freeze-dried to form aerogel template, which was then dipped into oil to induce oleogels. The results showed that adding SPIH significantly improved the physicochemical properties of oleogels. The results of ζ-potential, FTIR, and rheology demonstrated a stronger binding of SPIH to CMC-Na compared to SPI. The CMC-Na-SPIH aerogels exhibited a coarser surface and denser network structure in contrast to CMC-Na-SPI aerogels, with an oil holding capacity (OHC) of up to 84.6 % and oil absorption capacity (OAC) of 47.4 g/g. The mechanical strength of oleogels was further enhanced through chemical crosslinking. Both CMC-Na-SPI and CMC-Na-SPIH oleogels displayed excellent elasticity and reversible compressibility, with CMC-Na-SPIH oleogels demonstrating superior mechanical strength. Additionally, CMC-Na-SPIH oleogels exhibited enhanced slow release of antimicrobial substances and antioxidant properties. Increasing the content of SPI/SPIH significantly improved the mechanical strength, antioxidant capacity, and OHC of the oleogels. This research presents a straightforward and promising approach to enhance the performance of aerogel template oleogels.


Asunto(s)
Compuestos Orgánicos , Proteínas de Soja , Proteínas de Soja/química , Compuestos Orgánicos/química , Hidrólisis , Carboximetilcelulosa de Sodio/química , Reología , Reactivos de Enlaces Cruzados/química , Geles/química
10.
Mar Drugs ; 22(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921572

RESUMEN

Utilization of fish rest raw material for fish oil extraction has received interest with the increasing demand for sustainable food sources. Enzymatic hydrolysis is an efficient method for the extraction of value-added compounds, but its effectiveness may be enhanced by high-pressure processing (HPP). However, HPP can induce lipid oxidation, affecting the quality of the oil. This study aimed to evaluate the quality of fish oil obtained after enzymatic hydrolysis of a mixture of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) rest raw material pretreated by HPP. Six pretreatments were tested prior to enzymatic hydrolysis; 200 MPa × 4 min, 200 MPa × 8 min, 400 MPa × 4 min, 400 MPa × 8 min, 600 MPa × 4 min, and 600 MPa × 8 min. The oil samples were analyzed for lipid oxidation parameters, free fatty acid content, fatty acid composition, and color changes over 8 weeks. The results confirmed that HPP may induce lipid oxidation and revealed significant influence of HPP parameters on lipid oxidation, with higher pressures leading to increased oxidation. Fatty acid composition varied among samples, but it was not substantially affected by HPP.


Asunto(s)
Ácidos Grasos , Aceites de Pescado , Oncorhynchus mykiss , Salmo salar , Animales , Oncorhynchus mykiss/metabolismo , Aceites de Pescado/química , Hidrólisis , Ácidos Grasos/análisis , Presión , Oxidación-Reducción
11.
Food Chem ; 458: 140219, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943966

RESUMEN

Diacylglycerol (DAG) has garnered attention for its safe and nutritious qualities, and its utilization in emulsion systems to encapsulate hydrophobic bioactives is anticipated to enhance their bioaccessibility. Thus, this study aimed to evaluate the influence of DAG oil as a carrier on the stability and digestive characteristics of nanostructured lipid carriers (NLCs) containing lycopene (LYC). The results indicated that DAG oil demonstrated superior storage and heating stability in comparison to triacylglycerol (TAG) oil. Furthermore, NLCs formulated with DAG oil exhibited a faster rate of lipolysis (>76.3%) and higher loading capacity (1.48%), resulting in an approximate 11% enhancement in the bioaccessibility of LYC (reaching up to 31.4%). DAG oils show considerable potential for enhancing and prolonging the properties and bioactivity of NLC carriers, thereby boosting bioaccessibility. The incorporation of DAG oil in food systems holds promise for enriching their functionality over traditional TAG oil.


Asunto(s)
Digestión , Diglicéridos , Lípidos , Licopeno , Nanoestructuras , Diglicéridos/química , Licopeno/química , Nanoestructuras/química , Lípidos/química , Portadores de Fármacos/química , Estabilidad de Medicamentos , Humanos
12.
Food Res Int ; 188: 114532, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823889

RESUMEN

Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 µg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.


Asunto(s)
Digestión , Luteolina , Tamaño de la Partícula , Proteínas de Soja , Luteolina/química , Proteínas de Soja/química , Nanocompuestos/química , Polisacáridos/química , Interacciones Hidrofóbicas e Hidrofílicas , Glycine max/química , Solubilidad , Alimentos Funcionales , Tracto Gastrointestinal/metabolismo
13.
Food Chem ; 456: 139935, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38870805

RESUMEN

This study investigated the effects of oil phases on the encapsulation rate, storage stability, and bioavailability of astaxanthin (ASTA) in Pickering emulsions (PEs). Results showed PEs of mixed oils (olive oil/edible tea oil) had excellent encapsulation efficiency (about 96.0%) and storage stability of ASTA. In vitro simulated gastrointestinal digestion results showed the mixed oil PE with a smaller interfacial area and higher monounsaturated fatty acid content may play a better role in improving ASTA retention and bioaccessibility. In vivo absorption results confirmed the mixed oil PE with an olive oil/edible tea oil of 7:3 was more favorable for ASTA absorption. Molecular dynamics simulation showed ASTA bound more strongly and stably to fatty acid molecules in the system of olive oil/edible tea oil of 7:3; and van der Waals force was the main binding force. NMR further proved there really were interactions between ASTA and four main fatty acids.


Asunto(s)
Disponibilidad Biológica , Emulsiones , Simulación de Dinámica Molecular , Aceite de Oliva , Xantófilas , Xantófilas/química , Xantófilas/metabolismo , Emulsiones/química , Aceite de Oliva/química , Animales , Masculino , Digestión , Humanos , Estabilidad de Medicamentos
14.
J Food Sci ; 89(7): 4148-4161, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838085

RESUMEN

Freezing is a popular method of food preservation with multiple advantages. However, it may change the internal composition and quality of food. This study aimed to investigate the effect of modified starch on the storage stability of frozen raw noodles (FRNs) under refrigerated storage conditions. Oxidized starch (OS), a modified starch, is widely used in the food industry. In the present study, texture and cooking loss rate analyses showed that the hardness and chewiness of FRNs with added OS increased and the cooking loss rate decreased during the frozen storage process. Low-field nuclear magnetic resonance characterization confirmed that the water-holding capacity of FRNs with OS was enhanced. When 6% OS was added, the maximum freezable water content of FRNs was lower than the minimum freezable water content (51%) of FRNs without OS during freezing. Fourier-transform infrared spectroscopy showed that after the addition of OS, the secondary structures beneficial for structural maintenance were increased, forming a denser protein network and improving the microstructure of FRNs. In summary, the water state, protein structure, and quality characteristics of FRNs were improved by the addition of OS within an appropriate range.


Asunto(s)
Almacenamiento de Alimentos , Congelación , Oxidación-Reducción , Almidón , Agua , Almidón/química , Agua/química , Almacenamiento de Alimentos/métodos , Culinaria/métodos , Conservación de Alimentos/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos
15.
Food Sci Nutr ; 12(6): 4299-4310, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873440

RESUMEN

Spread products have an important market share as they have high nutritional value and they are increasingly consumed, especially by children as a source of energy. The purpose of this work was to evaluate the potential use of powdered chickpea, black rice, carob, doum, date seeds, and beetroot to produce novel functional spreadable products as cocoa-free alternatives. Additionally, to avoid the side effects of cocoa-based products and to assess the cocoa replacement effects on the sensory properties, chemical composition, texture analysis, viscosity, antioxidant, peroxide stability, and microbial quality during storage periods were compared to the ones of cocoa spread. Sensory evaluation revealed that most formulated spreads were accepted as chocolate spread alternatives since there was no significant difference in overall acceptability among cocoa, chickpea, black rice, carob, and doum, while date seeds and beetroot spreads were significantly less acceptable. A variation was observed in the proximate chemical analysis of the produced functional spreads, as the alternative spreads had different characteristics to each other in their physicochemical, texture, and rheological properties. Results indicated a wide variation in the total phenolic content (TPC) of the different spread extracts. The highest amount of TPC was obtained for beetroot spread (455.84 mg GAE/100 g) followed by black rice spread (436.08 mg GAE/100 g). The obtained results indicated that the antioxidant activity of different spreads was significantly different (p < .05) while based on their microbiological analysis, they could have a shelf life of up to 9 months. According to the results, chickpea, carob, doum, black rice, date seeds, and beetroot powders could be used for the production of cocoa-free alternatives as they were highly acceptable and they showed antioxidant and antimicrobial activity.

16.
J Sci Food Agric ; 104(12): 7567-7579, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38779961

RESUMEN

BACKGROUND: Green rooibos (Aspalathus linearis (Burm.f.) R.Dahlgren) herbal tea is popular due to its health-promoting properties. Information on its characteristic sensory profile is scarce and sensory tools to define product variation are needed. The storage conditions and time during its shelf-life are hypothesized to affect the product quality. RESULTS: Production batches from two producers spanning 5 years (n = 57) were analyzed using descriptive sensory analysis. Primary attributes (>30 median intensity; 100% occurrence frequency) included 'hay/dried grass', 'cooked oats', 'tobacco', 'honey' and 'caramel' aromas, and astringent mouthfeel. 'Cooked vegetables', 'green grass', 'stewed fruit', 'rooibos-woody', 'marmalade' and 'cardboard' aromas, sweet taste and bitter taste were secondary attributes (10-20 median intensity; 100% occurrence frequency). The same flavor attributes were present, except for sweet-associated and fruity notes. A sensory lexicon and sensory wheels for aroma and palate attributes were constructed from the data. The shelf-life stability of green rooibos was evaluated in moisture-impermeable (pouches) and moisture-permeable (sachets) packaging at 25 and 40 °C at 60% relative humidity over 24 weeks. Green rooibos samples stored in pouches at 4 °C were also evaluated. Storage in sachets led to moisture uptake (~10 g (100 g)-1 dry basis) and an increase in water activity (>0.6), causing degradation of chlorophyll and dihydrochalcones. Changes in color and sensory profile (decreased vegetal, cereal and cardboard aromas and increased sweet-associated and fruity aromas) were evident and more pronounced at the higher storage temperature. CONCLUSIONS: Storage at ≤25 °C in moisture-impermeable packaging material is recommended for green rooibos herbal tea. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Aspalathus , Almacenamiento de Alimentos , Odorantes , Gusto , Aspalathus/química , Humanos , Odorantes/análisis , Tés de Hierbas/análisis
17.
Foods ; 13(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38790764

RESUMEN

Acerola (Malpighia emarginata DC.) is a sub-tropical and tropical fruit renowned for its high levels of vitamin C and phenolic compounds, which offer health benefits. This study aimed to optimize the spray drying process by determining the inlet and outlet temperatures using response surface methodology (RSM) with the central composite design. Additionally, it aimed to evaluate the release kinetics in the hydrophilic food simulation environment and the stability of the resulting powder under various storage temperatures. The RSM method determined the optimal inlet and outlet temperatures as 157 °C and 91 °C, respectively. High-accuracy prediction equations (R2 ≥ 0.88) were developed for moisture content (3.02%), process yield (91.15%), and the encapsulation yield of total polyphenol content (61.44%), total flavonoid content (37.42%), and vitamin C (27.19%), with a predicted monolayer moisture content below 4.01%, according to the BET equation. The powder exhibited good dissolution characteristics in the acidic hydrophilic food simulation environment and showed greater stability when stored at 10 °C for 30 days, compared to storage at 35 °C and 45 °C.

18.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791124

RESUMEN

The use of lipase immobilized on an octyl-agarose support to obtain the optically pure enantiomers of chiral drugs in reactions carried out in organic solvents is a great challenge for chemical and pharmaceutical sciences. Therefore, it is extremely important to develop optimal procedures to achieve a high enantioselectivity of the biocatalysts in the organic medium. Our paper describes a new approach to biocatalysis performed in an organic solvent with the use of CALB-octyl-agarose support including the application of a polypropylene reactor, an appropriate buffer for immobilization (Tris base-pH 9, 100 mM), a drying step, and then the storage of immobilized lipases in a climatic chamber or a refrigerator. An immobilized lipase B from Candida antarctica (CALB) was used in the kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification with methanol, reaching a high enantiomeric excess (eep = 89.6 ± 2.0%). As part of the immobilization optimization, the influence of different buffers was investigated. The effect of the reactor material and the reaction medium on the lipase activity was also studied. Moreover, the stability of the immobilized lipases: lipase from Candida rugosa (CRL) and CALB during storage in various temperature and humidity conditions (climatic chamber and refrigerator) was tested. The application of the immobilized CALB in a polypropylene reactor allowed for receiving over 9-fold higher conversion values compared to the results achieved when conducting the reaction in a glass reactor, as well as approximately 30-fold higher conversion values in comparison with free lipase. The good stability of the CALB-octyl-agarose support was demonstrated. After 7 days of storage in a climatic chamber or refrigerator (with protection from humidity) approximately 60% higher conversion values were obtained compared to the results observed for the immobilized form that had not been stored. The new approach involving the application of the CALB-octyl-agarose support for reactions performed in organic solvents indicates a significant role of the polymer reactor material being used in achieving high catalytic activity.


Asunto(s)
Biocatálisis , Enzimas Inmovilizadas , Proteínas Fúngicas , Lipasa , Sefarosa , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sefarosa/química , Propionatos/química , Estereoisomerismo , Cinética , Esterificación , Temperatura , Estabilidad de Enzimas , Candida/enzimología , Solventes/química , Saccharomycetales
19.
Food Chem X ; 22: 101444, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38756470

RESUMEN

Differences between the stability of α-, ß-, γ-, and δ-tocopherol as well α-tocotrienol stored at -20 °C and -80 °C were studied in broccoli and blueberry samples. Before storage up to 28 days, they underwent different initializing processes such as freezing quickly with liquid nitrogen and freeze-drying, followed by homogenization. While α-tocopherol levels in blueberries did not significantly differ, levels in broccoli were substantially higher after homogenization of freeze-dried samples compared to fresh broccoli samples. This might be caused by higher extractability of α-tocopherol from the changed cell structure. Storage of fresh broccoli samples at -20 °C led to decreasing α-tocopherol levels. Nevertheless, the deviation between freeze-dried samples to the initial fresh samples and fresh samples frozen with liquid nitrogen stored at -20 °C for 7 days were in the same order of magnitude. In conclusion, storage up to 7 days for vitamin relevant samples before analysis seemed to be justifiable.

20.
Food Chem ; 452: 139523, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728889

RESUMEN

Rye leaven, the basic constituent of sour rye soup ('zurek' or white borsch), was obtained through three methods of initiating lacto-fermentation of rye flour. Optimal concentrations of NaCl (1.5%) and garlic (0.5%) were selected by utilizing the response surface methodology. During the production and storage of leaven at 10 °C and 20 °C, the secalin proteins of rye flour degraded significantly and the concentration of free amino acids increased, making the rye leaven an environment potentially conducive to the formation of biogenic amines. Putrescine (max. conc: 116.7 mg kg-1) and tyramine (max. conc: 63.4 mg kg-1) were the amines that occurred in the largest amounts in the leavens. The final concentration of histamine (after 150 days of storage) did not exceed 22 mg kg-1. Regardless of the method of initiation of fermentation, the products that contained fewer biogenic amines better retained their sensory characteristics (r ≤ -0.89, p < 0.05) and had a higher number of lactic acid bacteria (r ≤ -0.66, p < 0.05).


Asunto(s)
Aminas Biogénicas , Fermentación , Almacenamiento de Alimentos , Secale , Aminas Biogénicas/análisis , Secale/química , Harina/análisis , Humanos , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA