Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(29): e2210419, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094185

RESUMEN

Polymeric gel-based artificial muscles exhibiting tissue-matched Young's modulus (10 Pa-1 MPa) promise to be core components in future soft machines with inherently safe human-machine interactions. However, the ability to simultaneously generate fast, large, high-power, and long-lasting actuation in the open-air environment, has yet been demonstrated in this class of ultra-soft materials. Herein, to overcome this hurdle, the design and synthesis of a twisted and coiled liquid crystalline glycerol-organogel (TCLCG) is reported. Such material with a low Young's modulus of 133 kPa can surpass the actuation performance of skeletal muscles in a variety of aspects, including actuation strain (66%), actuation rate (275% s-1 ), power density (438 kW m-3 ), and work capacity (105 kJ m-3 ). Notably, its power density is 14 times higher than the record of state-of-the-art polymeric gels. No actuation performance degradation is detected in the TCLCG even after air exposure for 7 days, owing to the excellent water retention ability enabled by glycerol as co-solvent with water. Using TCLCG, mobile soft robots with extraordinary maneuverability in unstructured environments are successfully demonstrated, including a crawler showing fast bidirectional locomotion (0.50 mm s-1 ) in a small-confined space, and a roller that can escape after deep burying in sand.

2.
Molecules ; 27(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35209044

RESUMEN

Three novel bis-urea fluorescent low-molecular-weight gelators (LMWGs) based on the tetraethyl diphenylmethane spacer-namely, L1, L2, and L3, bearing indole, dansyl, and quinoline units as fluorogenic fragments, respectively, are able to form gel in different solvents. L2 and L3 gel in apolar solvents such as chlorobenzene and nitrobenzene. Gelator L1 is able to gel in the polar solvent mixture DMSO/H2O (H2O 15% v/v). This allowed the study of gel formation in the presence of anions as a third component. An interesting anion-dependent gel formation was observed with fluoride and benzoate inhibiting the gelation process and H2PO4-, thus causing a delay of 24 h in the gel formation. The interaction of L1 with the anions in solution was clarified by 1H-NMR titrations and the differences in the cooperativity of the two types of NH H-bond donor groups (one indole NH and two urea NHs) on L1 when binding BzO- or H2PO4- were taken into account to explain the inhibition of the gelation in the presence of BzO-. DFT calculations corroborate this hypothesis and, more importantly, demonstrate considering a trimeric model of the L1 gel that BzO- favours its disruption into monomers inhibiting the gel formation.

3.
Chem Asian J ; 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29863308

RESUMEN

A newly synthesized bis-pyridyl ligand having a diphenyl ether backbone (LP6) displayed the ability to form crystalline coordination polymers (CP1-CP6) which were fully characterized by single crystal X-ray diffraction. Most of the resulting polymers were lattice-occluded crystalline solids-a structural characteristic reminiscent to gels. The reactants of the coordination polymers produced metallogels in DMSO/water confirming the validity of the design principles with which the coordination polymers were synthesized. Some of the metallogels displayed material properties like in situ synthesis of Ag nanoparticles and stimuli-responsive gel-sol transition including sensing hazardous gases like ammonia and hydrogen sulfide.

4.
Polymer (Guildf) ; 101: 415-449, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28348443

RESUMEN

Due to their unique characteristics such as multifold change of volume in response to minute change in the environment, resemblance of soft biological tissues, ability to operate in wet environments, and chemical tailorability, stimuli responsive gels represent a versatile and very promising class of materials for sensors, muscle-type actuators, biomedical applications, and autonomous intelligent structures. Success of these materials in practical applications largely depends on their ability to fulfill application-specific mechanical requirements. This article provides an overview of recent application-driven development of covalent polymer gels with special emphasis on the relevant mechanical factors and properties. A short account of mechanisms of gel swelling and mechanical characteristics of importance to stimuli-responsive gels is presented. The review highlights major barriers for wider application of these materials and discusses latest advances and potential future directions toward overcoming these barriers, including interpenetrating networks, homogeneous networks, nanocomposites, and nanofilamentary gels.

5.
Chemphyschem ; 15(9): 1785-92, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24861868

RESUMEN

Composite hydrogels--macroscopic hydrogels with embedded microgel particles--are expected to respond to external stimuli quickly because microgels swell much faster than bulky gels. In this work, the kinetics of the pH-induced swelling of a composite hydrogel are studied using turbidity measurements. The embedded microgel is a pH- and thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) microgel and the hydrogel matrix is polyacrylamide. A rapid pH-induced swelling of the embedded microgel particles is observed, confirming that composite hydrogels respond faster than ordinary hydrogels. However, compared with the free microgels, the swelling of the embedded microgel is much slower. Diffusion of OH(-) into the composite hydrogel film is identified as the main reason for the slow swelling of the embedded microgel particles, as the time of the pH-induced swelling of this film is comparable to that of OH(-) diffusion into the film. The composition of the hydrogel matrix does not significantly change the characteristic swelling time of the composite hydrogel film. However, the swelling pattern of the film changes with composition of the hydrogel matrix.


Asunto(s)
Resinas Acrílicas/química , Hidrogeles/química , Acrilamidas/química , Difusión , Concentración de Iones de Hidrógeno , Cinética , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA