Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Perinat Med ; 51(7): 886-890, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37194083

RESUMEN

OBJECTIVES: This study was conducted to determine whether bacteria, fungi, or archaea are detected in the amniotic fluid of patients who underwent midtrimester amniocentesis for clinical indications. METHODS: Amniotic fluid samples from 692 pregnancies were tested by using a combination of culture and end-point polymerase chain reaction (PCR) techniques. Intra-amniotic inflammation was defined as an interleukin-6 concentration >2,935 pg/mL. RESULTS: Microorganisms were detected in 0.3% (2/692) of cases based on cultivation, 1.73% (12/692) based on broad-range end-point PCR, and 2% (14/692) based on the combination of both methods. However, most (13/14) of these cases did not have evidence of intra-amniotic inflammation and delivered at term. Therefore, a positive culture or end-point PCR in most patients appears to have no apparent clinical significance. CONCLUSIONS: Amniotic fluid in the midtrimester of pregnancy generally does not contain bacteria, fungi, or archaea. Interpretation of amniotic fluid culture and molecular microbiologic results is aided by the assessment of the inflammatory state of the amniotic cavity. The presence of microorganisms, as determined by culture or a microbial signal in the absence of intra-amniotic inflammation, appears to be a benign condition.


Asunto(s)
Líquido Amniótico , Corioamnionitis , Embarazo , Femenino , Humanos , Líquido Amniótico/microbiología , Segundo Trimestre del Embarazo , Corioamnionitis/microbiología , Archaea , Estudios Retrospectivos , Bacterias , Inflamación , Hongos
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769194

RESUMEN

The in utero microbiome hypothesis has been long debated. This hypothesis will change our comprehension of the pioneer human microbiome if proved correct. In 60 uncomplicated pregnancies, we profiled the microbiome of chorionic villi (CV) and amniotic fluids (AF) in relation to maternal saliva, rectum, and vagina and the soluble cytokines cascade in the vagina, CV and AF. In our series, 12/37 (32%) AF and 10/23 (44%) CV tested positive for bacterial DNA. CV and AF harbored bacterial DNA of Streptococcus and Lactobacillus, overlapping that of the matched oral and vaginal niches, which showed a dysbiotic microbiome. In these pregnant women, the immune profiling revealed an immune hyporesponsiveness in the vagina and a high intraamniotic concentration of inflammatory cytokines. To understand the eventual role of bacterial colonization of the CV and AF and the associated immune response in the pregnancy outcome, further appropriate studies are needed. In this context, further studies should highlight if the hematogenous route could justify the spread of bacterial DNA from the oral microbiome to the placenta and if vaginal dysbiosis could favor the likelihood of identifying CV and AF positive for bacterial DNA.


Asunto(s)
Líquido Amniótico , Microbioma Gastrointestinal , Embarazo , Femenino , Humanos , Vellosidades Coriónicas , ADN Bacteriano/genética , Dermatoglifia del ADN , Bacterias/genética , Vagina/microbiología , Citocinas/genética
3.
Front Immunol ; 13: 820366, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296083

RESUMEN

The existence of an amniotic fluid microbiota (i.e., a viable microbial community) in mammals is controversial. Its existence would require a fundamental reconsideration of fetal in utero exposure to and colonization by microorganisms and the role of intra-amniotic microorganisms in fetal immune development as well as in pregnancy outcomes. In this study, we determined whether the amniotic fluid of mice harbors a microbiota in late gestation. The profiles of the amniotic fluids of pups located proximally or distally to the cervix were characterized through quantitative real-time PCR, 16S rRNA gene sequencing, and culture (N = 21 dams). These profiles were compared to those of technical controls for bacterial and DNA contamination. The load of 16S rRNA genes in the amniotic fluid exceeded that in controls. Additionally, the 16S rRNA gene profiles of the amniotic fluid differed from those of controls, with Corynebacterium tuberculostearicum being differentially more abundant in amniotic fluid profiles; however, this bacterium was not cultured from amniotic fluid. Of the 42 attempted bacterial cultures of amniotic fluids, only one yielded bacterial growth - Lactobacillus murinus. The 16S rRNA gene of this common murine-associated bacterium was not detected in any amniotic fluid sample, suggesting it did not originate from the amniotic fluid. No differences in the 16S rRNA gene load, 16S rRNA gene profile, or bacterial culture were observed between the amniotic fluids located Proximally and distally to the cervix. Collectively, these data indicate that, although there is a modest DNA signal of bacteria in murine amniotic fluid, there is no evidence that this signal represents a viable microbiota. While this means that amniotic fluid is not a source of microorganisms for in utero colonization in mice, it may nevertheless contribute to fetal exposure to microbial components. The developmental consequences of this observation warrant further investigation.


Asunto(s)
Líquido Amniótico , Microbiota , Líquido Amniótico/microbiología , Animales , Bacterias/genética , Femenino , Mamíferos/genética , Ratones , Microbiota/genética , Embarazo , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Crit Rev Microbiol ; 48(5): 611-623, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34788162

RESUMEN

The microbiome is believed to be established during the birthing process through exposure to the maternal microbiome and immediate external environment. The absence of a microbiome prior to birth is based on the sterile womb hypothesis, which was formulated at the beginning of the 20th century and is supported primarily by the culture-based approach in microbiological studies.Findings of bacterial presence in products of fertilization such as the placenta, amniotic fluid, foetal membranes, and umbilical cord blood in studies using next-generation DNA sequencing technologies began to challenge the sterile nature of the intrauterine environment during gestation. These studies have been mainly criticized by their approach to contamination and inconclusive evidence of viability. The implications of bacterial presence in utero are far reaching in medicine and basic sciences. If commensal bacteria exist in the foetus, antibiotic therapies in pregnancy particularly for asymptomatic cases will need to be re-evaluated. Experimental studies utilizing gnotobiology may also be impacted by a realignment of theory.This review of existing literature aims to provide insight into the existence of bacteria in utero, specifically the foetal microbiome through analysis of experimental evidence and theoretical concepts, and to suggest approaches that may further provide clarity into this inquiry.


Asunto(s)
Microbiota , Líquido Amniótico/microbiología , Bacterias/genética , Femenino , Humanos , Placenta/microbiología , Embarazo
5.
Front Microbiol ; 10: 1124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231319

RESUMEN

The human microbiome includes trillions of bacteria, many of which play a vital role in host physiology. Numerous studies have now detected bacterial DNA in first-pass meconium and amniotic fluid samples, suggesting that the human microbiome may commence in utero. However, these data have remained contentious due to underlying contamination issues. Here, we have used a previously described method for reducing contamination in microbiome workflows to determine if there is a fetal bacterial microbiome beyond the level of background contamination. We recruited 50 women undergoing non-emergency cesarean section deliveries with no evidence of intra-uterine infection and collected first-pass meconium and amniotic fluid samples. Full-length 16S rRNA gene sequencing was performed using PacBio SMRT cell technology, to allow high resolution profiling of the fetal gut and amniotic fluid bacterial microbiomes. Levels of inflammatory cytokines were measured in amniotic fluid, and levels of immunomodulatory short chain fatty acids (SCFAs) were quantified in meconium. All meconium samples and most amniotic fluid samples (36/43) contained bacterial DNA. The meconium microbiome was dominated by reads that mapped to Pelomonas puraquae. Aside from this species, the meconium microbiome was remarkably heterogeneous between patients. The amniotic fluid microbiome was more diverse and contained mainly reads that mapped to typical skin commensals, including Propionibacterium acnes and Staphylococcus spp. All meconium samples contained acetate and propionate, at ratios similar to those previously reported in infants. P. puraquae reads were inversely correlated with meconium propionate levels. Amniotic fluid cytokine levels were associated with the amniotic fluid microbiome. Our results demonstrate that bacterial DNA and SCFAs are present in utero, and have the potential to influence the developing fetal immune system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA