Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Transl Med ; 22(1): 783, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175068

RESUMEN

A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and purification methods in this article.


Asunto(s)
Células Madre Pluripotentes Inducidas , Regeneración , Humanos , Células Madre Pluripotentes Inducidas/citología , Animales , Corazón/fisiología , Miocitos Cardíacos/citología , Medicina Regenerativa/métodos
3.
World J Stem Cells ; 16(4): 334-352, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38690516

RESUMEN

Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.

4.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1021340

RESUMEN

BACKGROUND:Sema3A is a power secretory osteoprotective factor.However,studies about Sema3A-modified dental pulp stem cells(Sema3A-DPSCs)are rare. OBJECTIVE:To explore the osteogenic differentiation ability of Sema3A-DPSCs and their regulatory effect on the osteogenic differentiation of the pre-osteoblast cell line MC3T3-E1. METHODS:First,Sema3A-DPSCs were constructed using a lentivirus infection system carrying the Sema3A gene.Control lentivirus-treated DPSCs(Vector-DPSCs)were used as controls.Sema3A-DPSCs or Vector-DPSCs were co-cultured with proosteoblast line MC3T3-E1 at the ratio of 1∶1 and 1∶3 for 24 hours.Finally,the Sema3A-DPSCs,Vector-DPSCs and their co-cultured cells with MC3T3-E1 were cultured for osteogenic induction and differentiation.Osteogenic gene expression was detected by alkaline phosphatase staining,alizarin red staining and real-time quantitative RT-PCR to evaluate osteogenic differentiation ability. RESULTS AND CONCLUSION:(1)Sema3A mRNA and protein expression levels in Sema3A-DPSCs were significantly up-regulated.The level of secreted Sema3A in cell supernatant was up-regulated.(2)Compared with the Vector-DPSCs,mRNA expressions of osteogenic genes alkaline phosphatase,Runt-related transcription factor 2,osteocalcin and Sp7 transcription factors in Sema3A-DPSCs were up-regulated;the activity of alkaline phosphatase was enhanced,and the formation of mineralized nodules increased.(3)There were no obvious differences in proliferation between Sema3A-DPSCs and Vector-DPSCs.(4)Compared with MC3T3-E1/Vector-DPSCs co-culture system,the expression of MC3T3-E1 osteogenic genes was up-regulated,and the total alkaline phosphatase activity was enhanced and more mineralized nodules were formed in the MC3T3-E1/Sema3A-DPSCs co-culture system.(5)The results suggest that overexpression of Sema3A can enhance the osteogenic differentiation of DPSCs.Overexpression of Sema3A in DPSCs can promote osteogenic differentiation of MC3T3-E1 in the DPSCs/MC3T3-E1 co-culture system.

5.
Biomed Pharmacother ; 170: 116033, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128181

RESUMEN

Although stem cell transplantation is an effective strategy in the treatment of type 1 diabetes mellitus (T1DM), the mechanisms underlying its therapeutic effects remain unclear. We hypothesized that stem cells target gut microbiota and intestinal mucosal immunity to promote therapeutic effects against T1DM. We investigated the effects of human amniotic mesenchymal stem cells (hAMSCs) on intestinal microbiota and mucosal immunity in streptozotocin-induced T1DM mice. hAMSCs promoted significant reductions in blood glucose levels and increased the number of insulin-secreting cells in the T1DM model. Compared with T1DM model mice, 16S rRNA sequencing revealed significant differences in the composition, diversity, and abundance of microbiota in the ileum of hAMSC-treated mice. Bifidobacterium, Prevotella, and Alcaligenes species were among the 15 most abundant differential bacterial species. LC-MS revealed significant changes in ileal metabolites, and among the top 100 differential metabolites identified, we found that a significant increase in taurine was closely associated with hAMSC therapy. Additionally, we detected significant differences between the two groups with respect to the frequency and phenotype of CD4+ T cell subsets in mesenteric lymph nodes, and hAMSCs promoted significant increases in Th2 and Treg cell frequencies and reduced the frequencies of Th1 and Th17 cells. Moreover, correlation analysis revealed pairwise correlations between differential microflora and differential metabolites and immune signatures. hAMSCs thus have positive effects on the microbiota and their metabolites in the ileum and intestinal mucosal immunity in T1DM. Our findings indicate that gut microbiota and intestinal mucosal immunity may play vital roles in the hAMSC-based treatment of T1DM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Humanos , Ratones , Animales , ARN Ribosómico 16S , Trasplante de Células Madre
6.
Front Biosci (Landmark Ed) ; 28(11): 285, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062844

RESUMEN

Mesenchymal stem cells (MSCs) offer great potential for use in stem cell-based therapies due to their unique regenerative potential via reconstructive and paracrine capacities. These therapies offer new hope for patients suffering from conditions that have no cure. Currently, mesenchymal stem cells (from adipose tissues, bone marrow, and umbilical cords) are most interesting for application in those therapies. Nevertheless, the development of MSC-based medical products requires thorough research and standardization that maximizes the therapeutic effect while minimizing side effects. One of the interesting novel approaches to achieving this goal is combining MSC therapy with an electromagnetic field (EMF). Many studies have shown that EMF can enhance the regenerative properties of MSCs by influencing stem cell fate through modulating differentiation, proliferation, cell cycle regulation, metabolism, and cytokine and growth factor secretions. Combination therapy of EMF-MSCs is a promising perspective; however, it is important to select appropriate EMF parameters to obtain beneficial therapeutic effects. Therefore, understanding the mechanisms involved in the EMF impact on MSCs is crucial. In this study, we provide an overview of the effects of EMF on the biological response and "fate" of MSCs, paying attention to the gaps in research that remain unfilled and discuss the clinical application of this approach.


Asunto(s)
Campos Electromagnéticos , Células Madre Mesenquimatosas , Humanos , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular/fisiología , Tejido Adiposo
7.
BMC Oral Health ; 23(1): 492, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454056

RESUMEN

BACKGROUND: Periodontitis is a common and chronic inflammatory disease characterized by irreversible destruction of the tooth surrounding tissues, especially intrabony defects, which eventually lead to tooth loss. In recent years, stem cell-based therapy for periodontitis has been gradually applied to the clinic, but whether stem cell-based therapy plays a positive role in periodontal regeneration is unclear at present. METHODS: The clinical studies related to the evaluation of mesenchymal stem cells for periodontal regeneration in PubMed, Cochrane Central Register of Controlled trials (CENTRAL), Web of Science (WOS), Embase, Scopus, Wanfang and China national knowledge infrastructure (CNKI) databases were searched in June 2023. The inclusion criteria required the studies to compare the efficacy of stem cell-based therapy with stem cell free therapy for the treatment periodontitis, and to have a follow-up for at least six months. Two evaluators searched, screened, and assessed the quality and the risk of bias in the included studies independently. Review Manager 5.4 software was used to perform the meta-analysis, and GRADEpro GDT was used to evaluate the level of the evidence. RESULTS: Five randomized controlled trials (RCTs) including 118 patients were analyzed. The results of this meta-analysis demonstrated that stem cell-based therapy showed better therapeutic effects on clinical attachment level (CAL) (MD = - 1.18, 95% CI = - 1.55, - 0.80, P < 0.00001), pocket probing depth (PPD) (MD = - 0.75, 95% CI = - 1.35, - 0.14, P = 0.020), and linear distance from bone crest to bottom of defect (BC-BD)( MD = - 0.95, 95% CI = - 1.67, - 0.23, P = 0.010) compared with cell-free group. However, stem cell-based therapy presented insignificant effects on gingival recession (P = 0.14), linear distance from cementoenamel junction to bottom of defect (P = 0.05). CONCLUSION: The results demonstrate that stem cell-based therapy may be beneficial for CAL, PPD and BC-BD. Due to the limited number of studies included, the strength of the results in this analysis was affected to a certain extent. The high-quality RCTs with large sample size, multi-blind, multi-centric are still required, and the methodological and normative clinical study protocol should be established and executed in the future.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Pérdida de Diente , Humanos , Regeneración Tisular Guiada Periodontal , Pérdida de Hueso Alveolar/terapia , Periodontitis/terapia , Enfermedad Crónica , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Regen Ther ; 24: 117-134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37441223

RESUMEN

The preclinical and clinical role of mesenchymal stem cells from various adult sources is extensively investigated and established in regenerative medicine. However, the comprehensive exploration of the therapeutic potential of Stem cells from human exfoliated deciduous teeth (SHED) is inadequate. Therefore, we performed a systematic meta-analysis of preclinical animal model studies in several diseases to provide insight into SHED's efficacy and therapeutic potential. Two blinded and independent investigators searched the available online databases and scrutinized the included studies. Meta-analysis was performed to evaluate the pooled effect estimate of intervention of SHED by Review Manager 5.4.1. To investigate the therapeutic efficacy of SHED intervention, we also analyzed the test of heterogeneity (I2), overall effect (Z), sensitivity, and publication bias. Among the 2156 scrutinized studies, 40 were included and evaluated as per inclusion and exclusion criteria. The intervention of SHED and its derivatives in several diseases depicted statistically significant therapeutic effects in periodontitis, pulpitis, spinal cord injury, parkinson's disease, alzheimer's disease, focal cerebral ischemia, peripheral nerve injury, and retinal pigmentosa. SHED also improved levels of alanine aminotransferase, aspartate aminotransferase, and bilirubin in liver fibrosis . In autoimmune diseases also, values were significant. SHED also showed a statistically significant reduction of wound healing area and new bone formation in bone defects. The pooled effect estimates of included preclinical studies demonstrated a statistically significant therapeutic effect of SHED in numerous diseases. Based on our data, it is suggested that the potential of SHED may be implemented in clinical trials after conducting a few more preclinical studies.

9.
Cell Biochem Biophys ; 81(3): 543-552, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421591

RESUMEN

Genetically engineered stem cells, not only acting as vector delivering growth factors or cytokines but also exhibiting improved cell properties, are promising cells for periodontal tissue regeneration. Sema3A is a power secretory osteoprotective factor. In this study, we aimed to construct Sema3A modified periodontal ligament stem cells (PDLSCs) and evaluated their osteogenic capability and crosstalk with pre-osteoblasts MC3T3-E1. First, Sema3A modified PDLSCs was constructed using lentivirus infection system carrying Sema3A gene and the transduction efficiency was analyzed. The osteogenic differentiation and proliferation of Sema3A-PDLSCs was evaluated. Then, MC3T3-E1 was directly co-cultured with Sema3A-PDLSCs or cultured in condition medium of Sema3A-PDLSCs and the osteogenic ability of MC3T3-E1 was assessed. The results showed that Sema3A-PDLSCs expressed and secreted upregulated Sema3A protein, which confirmed successful construction of Sema3A modified PDLSCs. After osteogenic induction, Sema3A-PDLSCs expressed upregulated ALP, OCN, RUNX2, and SP7 mRNA, expressed higher ALP activity, and produced more mineralization nodes, compared with Vector-PDLSCs. Whereas, there was no obvious differences in proliferation between Sema3A-PDLSCs and Vector-PDLSCs. MC3T3-E1 expressed upregulated mRNA of ALP, OCN, RUNX2, and SP7 when directly co-cultured with Sema3A-PDLSCs than Vector-PDLSCs. MC3T3-E1 also expressed upregulated osteogenic markers, showed higher ALP activity, and produced more mineralization nodes when cultured using condition medium of Sema3A-PDLSCs instead of Vector-PDLSCs. In conclusion, our results indicated that Sema3A modified PDLSCs showed enhanced osteogenic capability, and also facilitated differentiation of pre-osteoblasts.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Ligamento Periodontal , ARN Mensajero/metabolismo , Semaforina-3A/genética , Semaforina-3A/farmacología , Semaforina-3A/metabolismo , Células Madre/metabolismo , Animales , Ratones
10.
Biochem Biophys Res Commun ; 671: 87-95, 2023 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-37300945

RESUMEN

Stroke is the leading cause of death and long-term disability worldwide. But treatments are not available to promote functional recovery, and efficient therapies need to be investigated. Stem cell-based therapies hold great promise as potential technologies to restore function in brain disorders. Loss of GABAergic interneurons after stroke may result in sensorimotor defects. Here, by transplanting human brain organoids resembling the MGE domain (human MGE organoids, hMGEOs) derived from human induced pluripotent stem cells (hiPSCs) into the infarcted cortex of stroke mice, we found that grafted hMGEOs survived well and primarily differentiated into GABAergic interneurons and significantly restored the sensorimotor deficits of stroke mice for a long time. Our study offers the feasibility of stem cell replacement therapeutics strategy for stroke.


Asunto(s)
Células Madre Pluripotentes Inducidas , Accidente Cerebrovascular , Humanos , Ratones , Animales , Células Madre Pluripotentes Inducidas/fisiología , Accidente Cerebrovascular/terapia , Encéfalo , Interneuronas , Diferenciación Celular
11.
Front Cell Dev Biol ; 11: 1007703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36711031

RESUMEN

Stress urinary incontinence (SUI) adversely affects the quality of life of patients, while the currently available surgical and non-surgical therapies are not effective in all patients. Application of mesenchymal stem cells (MSCs) for regaining the ability to control urination has attracted interest. Herein, we reviewed the literature and analyzed recent studies on MSC-based therapies for SUI, summarized recent treatment strategies and their underlying mechanisms of action, while assessing their safety, effectiveness, and prospects. In addition, we traced and sorted the root literature and, from an experimental design perspective, divided the obtained results into four categories namely single MSC type therapy for SUI, MSC-based combination therapy for SUI, treatment of SUI with the MSC secretome, and other factors influencing MSC therapy. Although evidence demonstrates that the treatment strategies are safe and effective, the underlying mechanisms of action remain nebulous, hence more clinical trials are warranted. Therefore, future studies should focus on designing clinical trials of MSC-based therapies to determine the indications for treatment, cell dosage, appropriate surgical strategies, and optimal cell sources, and develop clinically relevant animal models to elucidate the molecular mechanisms underlying stem cell therapies improvement of SUI.

12.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203220

RESUMEN

Chronic wounds fail to achieve complete closure and are an economic burden to healthcare systems due to the limited treatment options and constant medical attention. Chronic wounds are characterised by dysregulated signalling pathways. Research has focused on naturally derived compounds, stem-cell-based therapy, small molecule drugs, oligonucleotide delivery nanoparticles, exosomes and peptide-based platforms. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wingless-related integration (Wnt)/ß-catenin, transforming growth factor-ß (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), Notch and hypoxia-inducible factor 1 (HIF-1) signalling pathways have critical roles in wound healing by modulating the inflammatory, proliferative and remodelling phases. Moreover, several regulators of the signalling pathways were demonstrated to be potential treatment targets. In this review, the current research on targeting signalling pathways under chronic wound conditions will be discussed together with implications for future studies.


Asunto(s)
Exosomas , Nanopartículas , Humanos , Fosfatidilinositol 3-Quinasa , Factor 1 Inducible por Hipoxia , Cicatrización de Heridas
13.
Front Neurol ; 13: 1000777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36468067

RESUMEN

Ischemic stroke is a common cerebrovascular disease that seriously affects human health. However, most patients do not practice self-care and cannot rely on the current clinical treatment for guaranteed functional recovery. Stem cell transplantation is an emerging treatment studied in various central nervous system diseases. More importantly, animal studies show that transplantation of mesenchymal stem cells (MSCs) can alleviate neurological deficits and bring hope to patients suffering from ischemic stroke. This paper reviews the biological characteristics of MSCs and discusses the mechanism and progression of MSC transplantation to provide new therapeutic directions for ischemic stroke.

14.
Front Immunol ; 13: 967487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189248

RESUMEN

Mesenchymal stem cells (mesenchymal stromal cells; MSC)-based therapies remain a promising approach to treat degenerative and inflammatory diseases. Their beneficial effects were confirmed in numerous experimental models and clinical trials. However, safety issues concerning MSCs' stability and their long-term effects limit their implementation in clinical practice, including treatment of respiratory diseases such as asthma, chronic obstructive pulmonary disease, and COVID-19. Here, we aimed to investigate the safety of intranasal application of human adipose tissue-derived MSCs in a preclinical experimental mice model and elucidate their effects on the lungs. We assessed short-term (two days) and long-term (nine days) effects of MSCs administration on lung morphology, immune responses, epithelial barrier function, and transcriptomic profiles. We observed an increased frequency of IFNγ- producing T cells and a decrease in occludin and claudin 3 as a long-term effect of MSCs administration. We also found changes in the lung transcriptomic profiles, reflecting redox imbalance and hypoxia signaling pathway. Additionally, we found dysregulation in genes clustered in pattern recognition receptors, macrophage activation, oxidative stress, and phagocytosis. Our results suggest that i.n. MSCs administration to noninflamed healthy lungs induces, in the late stages, low-grade inflammatory responses aiming at the clearance of MSCs graft.


Asunto(s)
COVID-19 , Células Madre Mesenquimatosas , Animales , COVID-19/terapia , Claudina-3/metabolismo , Humanos , Pulmón , Células Madre Mesenquimatosas/metabolismo , Ratones , Ocludina/metabolismo
15.
Ophthalmol Sci ; 2(2): 100148, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36249679

RESUMEN

Purpose: To propose an improved stem cell-based strategy for limbal stem cell deficiency (LSCD) treatment. Design: Experimental randomized or parallel-group animal study. Subjects: Fifty adult male New Zealand white rabbits. Methods: Human limbal stem/progenitor cells (LSCs) and limbal stromal stem/progenitor cells (LSSCs) were cultured in serum-free conditions and further differentiated into corneal epithelial cells and keratocytes, respectively. All cell types were characterized with lineage-specific markers. Gene expression analysis was performed to identify the potential function of LSSCs in corneal regeneration. Two LSCD models of rabbits for transplantations were used: transplantation performed at the time of limbal and corneal epithelial excision (LSCD model) and transplantation performed after clinical signs were induced in an LSCD model (pLSCD model). The pLSCD model better mimics the pathologic changes and symptoms of human LSCD. Rabbit models received LSC or LSC plus LSSC treatment. Corneal epithelial defects, neovascularization, and opacity were assessed every 3 weeks for 24 weeks. ZsGreen-labeled LSSCs were used for short-term tracking in vivo. Main Outcome Measures: Rates of corneal epithelial defect area, corneal neovascularization and opacity scores, graft survival rate, and immunofluorescence staining of specific markers. Results: Both LSC transplantation and LSC plus LSSC cotransplantation effectively repaired the corneal surface in the LSCD model. These 2 strategies showed no significant differences in terms of graft survival rate or epithelial repair. However, corneal opacity was observed in the LSC group (in 3 of 8 rabbits), but not in the LSC plus LSSC group. Notably, when treating LSCD rabbits with distinguishable stromal opacification and neovascularization, cotransplantation of LSCs and LSSCs exhibited significantly better therapeutic effects than transplantation of LSCs alone, with graft survival rates of 87.5% and 37.5%, respectively. The implanted LSSCs could differentiate into keratocytes during the wound-healing process. RNA sequencing analysis showed that the stromal cells produced not only a collagen-rich extracellular matrix to facilitate reconstruction of the lamellar structure, but also niche factors that accelerated epithelial cell growth and inhibited angiogenesis and inflammation. Conclusions: These findings highlight the support of stromal cells in niche homeostasis and tissue regeneration, providing LSC plus LSSC cotransplantation as a new treatment strategy for corneal blindness.

16.
Cytotherapy ; 24(12): 1211-1224, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36192337

RESUMEN

BACKGROUND AIMS: Although bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated success in pre-clinical studies, they have shown only mild therapeutic effects in clinical trials. Hypoxia pre-conditioning may optimize the performance of bone marrow-derived MSCs because it better reflects the physiological conditions of their origin. It is not known whether changes in the protein profile caused by hypoxia in MSCs can be extended to the extracellular vesicles (EVs) released from them. The aim of this study was to evaluate the proteomics profile of MSCs and their EVs under normoxic and hypoxic conditions. METHODS: Bone marrow-derived MSCs were isolated from six healthy male Wistar rats. After achieving 80% confluence, MSCs were subjected to normoxia (MSC-Norm) (21% oxygen, 5% carbon dioxide, 74% nitrogen) or hypoxia (MSC-Hyp) (1% oxygen, 5% carbon dioxide, 94% nitrogen) for 48 h. Cell viability and oxygen consumption rate were assessed. EVs were extracted from MSCs for each condition (EV-Norm and EV-Hyp) by ultracentrifugation. Total proteins were isolated from MSCs and EVs and prepared for mass spectrometry. EVs were characterized by nanoparticle tracking analysis. Proteomics data were analyzed by PatternLab 4.0, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Ontology, MetaboAnalyst and Reactome software. RESULTS: Cell viability was higher in MSC-Hyp than MSC-Norm (P = 0.007). Basal respiration (P = 0.001), proton leak (P = 0.004) and maximal respiration (P = 0.014) were lower in MSC-Hyp than MSC-Norm, and no changes in adenosine triphosphate-linked and residual respiration were observed. The authors detected 2177 proteins in MSC-Hyp and MSC-Norm, of which 147 were identified in only MSC-Hyp and 512 were identified in only MSC-Norm. Furthermore, 718 proteins were identified in EV-Hyp and EV-Norm, of which 293 were detected in only EV-Hyp and 30 were detected in only EV-Norm. Both MSC-Hyp and EV-Hyp showed enrichment of pathways and biological processes related to glycolysis, the immune system and extracellular matrix organization. CONCLUSIONS: MSCs subjected to hypoxia showed changes in their survival and metabolic activity. In addition, MSCs under hypoxia released more EVs, and their content was related to expression of regulatory proteins of the immune system and extracellular matrix organization. Because of the upregulation of proteins involved in glycolysis, gluconeogenesis and glucose uptake during hypoxia, production of reactive oxygen species and expression of immunosuppressive properties may be affected.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Ratas , Masculino , Proteómica , Dióxido de Carbono/metabolismo , Ratas Wistar , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Nitrógeno/metabolismo
17.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142198

RESUMEN

Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disabilities in the world. TBI is a signature disease for soldiers and veterans, but also affects civilians, including adults and children. Following TBI, the brain resident and immune cells turn into a "reactive" state, characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Other injuries to the brain, including radiation exposure, may trigger TBI-like pathology, characterized by inflammation. Currently there are no treatments to prevent or reverse the deleterious consequences of brain trauma. The recognition that TBI predisposes stem cell alterations suggests that stem cell-based therapies stand as a potential treatment for TBI. Here, we discuss the inflamed brain after TBI and radiation injury. We further review the status of stem cells in the inflamed brain and the applications of cell therapy in sequestering inflammation in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Trastornos del Conocimiento , Adulto , Lesiones Traumáticas del Encéfalo/patología , Niño , Humanos , Inflamación/etiología , Inflamación/terapia , Mediadores de Inflamación , Trasplante de Células Madre
19.
Stem Cells Transl Med ; 11(1): 26-34, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35641164

RESUMEN

It is the hope of clinicians and patients alike that stem cell-based therapeutic products will increasingly become applicable remedies for many diseases and injuries. Whereas some multipotent stem cells are already routinely used in regenerative medicine, the efficacious and safe clinical translation of pluripotent stem cells is still hampered by their inherent immunogenicity and tumorigenicity. In addition, stem cells harbor the paracrine potential to affect the behavior of cells in their microenvironment. On the one hand, this property can mediate advantageous supportive effects on the overall therapeutic concept. However, in the last years, it became evident that both, multipotent and pluripotent stem cells, are capable of inducing adjacent cells to become motile. Not only in the context of tumor development but generally, deregulated mobilization and uncontrolled navigation of patient's cells can have deleterious consequences for the therapeutic outcome. A more comprehensive understanding of this ubiquitous stem cell feature could allow its proper clinical handling and could thereby constitute an important building block for the further development of safe therapies.


Asunto(s)
Células Madre Pluripotentes , Movimiento Celular , Humanos , Células Madre Multipotentes , Células Madre Pluripotentes/metabolismo , Medicina Regenerativa , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA