RESUMEN
INTRODUCTION AND OBJECTIVES: This meta-analysis aims to evaluate the efficacy of stem cell therapy (SCT) for liver failure. MATERIALS AND METHODS: The study adhered to the recommended guidelines of the PRISMA statement. Eligible studies published prior to May 13, 2023, were comprehensively searched in databases including PubMed, Web of Science, and Embase. Quality assessment was conducted using the Cochrane risk-of-bias tool, and the standard mean differences were calculated for the clinical parameters. The hazard ratios were determined by extracting individual patient data from the Kaplan-Meier curve. RESULTS: A total of 2,937 articles were retrieved, and eight studies were included in the final analysis. Most of the studies focused on HBV-related liver failure and were randomized controlled trials. All studies utilized mesenchymal stem cells (MSCs), with the majority (62.5%) being allogeneic. The analysis revealed that combining stem cell therapy with standard medical treatment or plasma exchange significantly enhanced patient survival and reduced MELD scores. Specifically, allogeneic stem cells showed superior efficacy in improving survival outcomes compared to autologous stem cells. Furthermore, deep vessel injection plus a single injection demonstrated better effectiveness than peripheral vessel injection plus multiple injections in reducing MELD scores. CONCLUSIONS: This comprehensive analysis underscores the potential of MSC therapy in significantly improving survival and clinical outcomes in patients with liver failure, highlighting the superior benefits of allogeneic MSCs and deep vessel plus single injection administration.
RESUMEN
Introduction: Perianal fistula is a common colorectal disease which is caused mainly by cryptoglandular disease. Although most cases are treated successfully by surgery, management of complex perianal fistulas (CPAF) remains a challenge with limited results in recurrence and sometimes associated with fecal incontinence. The CPAF treatment with autologous adipose-derived mesenchymal stem cells (ASCs) had become a research hotspot. The technique started to be used in the treatment of Crohn's disease (CD) fistulas, where the studies showed safe and goods result from the procedure. Cultured ASCs have been used but this approach requires the preceding collection of adipose tissue, time for isolation of ASCs and subsequent in vitro expansion, need for laboratory facilities, and expertise in cell culturing. These factors have been getting over by using the commercially available alternative, allogenic ASCs. Treatment with allogeneic ASCs has shown good results in patients with CD fistulas, however with the disadvantage of being expensive. Objective: To show that the injection with freshly collected adipose tissue is an alternative to treatment with autologous or allogenic ASCs with several advantages. Methods: In this case report, we show our first experience in the treatment of CPAF with the application of collected adipose tissue in a tertiary referral hospital from Belo Horizonte, Brazil. Results The patient had a good postoperative recuperation with a complete fistula healing after 8 months without adverse effects. Conclusion: Injection with freshly collected adipose tissue is a promising and apparently safe sphincter-sparing technique in the treatment of CPAF. (AU)
Asunto(s)
Humanos , Femenino , Adulto , Fístula Rectal/cirugía , Células Madre Mesenquimatosas , Enfermedad de CrohnRESUMEN
Background: Achilles-tendon rupture prevails as a common tendon pathology. Adipose-derived mesenchymal stem cells (ADMSCs) are multipotent stem cells derived from adipose tissue with attractive regeneration properties; thus, their application in tendinopathies could be beneficial. Methods: Male rabbit ADMSCs were obtained from the falciform ligament according to previously established methods. After tenotomy and suture of the Achilles tendon, 1 × 106 flow-cytometry-characterized male ADMSCs were injected in four female New Zealand white rabbits in the experimental group (ADMSC group), whereas four rabbits were left untreated (lesion group). Confirmation of ADMSC presence in the injured site after 12 weeks was performed with quantitative sex-determining region Y (SRY)-gene RT-PCR. At Week 12, histochemical analysis was performed to evaluate tissue regeneration along with quantitative RT-PCR of collagen I and collagen III mRNA. Results: Presence of male ADMSCs was confirmed at Week 12. No statistically significant differences were found in the histochemical analysis; however, statistically significant differences between ADMSC and lesion group expression of collagen I and collagen III were evidenced, with 36.6% and 24.1% GAPDH-normalized mean expression, respectively, for collagen I (p < 0.05) and 26.3% and 11.9% GAPDH-normalized mean expression, respectively, for collagen III (p < 0.05). The expression ratio between the ADMSC and lesion group was 1.5 and 2.2 for collagen I and collagen III, respectively. Conclusion: Our results make an important contribution to the understanding and effect of ADMSCs in Achilles-tendon rupture.
RESUMEN
Stem Cell based-therapy is an active area of research in regenerative medicine. Mesenchymal stem/stromal cells (MSCs) are multipotent adult stem/progenitor cells, which could be easily expanded in vitro and have the ability to selectively migrate toward injured tissues, evade the immune system, and secrete trophic factors to support the repair of damaged tissues. The use of MSCs for cell and regenerative purposes has garnered the attention of scientists and clinicians. However, one of the most important issues before use MSCs in clinical practice is to standardize a number of aspects related to the source of MSCs, culture conditions, pre-condition protocols before transplantation, administration route, doses, or treatment duration. In this chapter, we described two standard protocols to isolate MSCs from bone marrow and umbilical cord connective tissue. In addition, basic characterization including immunophenotyping by flow cytometry and differentiation capability is also described.
Asunto(s)
Células Madre Mesenquimatosas , Adulto , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Tejido Conectivo , Humanos , Medicina RegenerativaRESUMEN
Multiple Sclerosis (MS) is a neurodegenerative, demyelinating, and chronic inflammatory disease characterized by Central Nervous System (CNS) lesions that lead to high levels of disability and severe physical and cognitive disturbances. Conventional therapies are not enough to control the neuroinflammatory process in MS and are not able to inhibit ongoing damage to the CNS. Thus, the secretome of mesenchymal stem cells (MSC-S) has been postulated as a potential therapy that could mitigate symptoms and disease progression. We considered that its combination with physical exercise (EX) could induce superior effects and increase the MSC-S effectiveness in this condition. Recent studies have revealed that both EX and MSC-S share similar mechanisms of action that mitigate auto-reactive T cell infiltration, regulate the local inflammatory response, modulate the proinflammatory profile of glial cells, and reduce neuronal damage. Clinical and experimental studies have reported that these treatments in an isolated way also improve myelination, regeneration, promote the release of neurotrophic factors, and increase the recruitment of endogenous stem cells. Together, these effects reduce disease progression and improve patient functionality. Despite these results, the combination of these methods has not yet been studied in MS. In this review, we focus on molecular elements and cellular responses induced by these treatments in a separate way, showing their beneficial effects in the control of symptoms and disease progression in MS, as well as indicating their contribution in clinical fields. In addition, we propose the combined use of EX and MSC-S as a strategy to boost their reparative and immunomodulatory effects in this condition, combining their benefits on synaptogenesis, neurogenesis, remyelination, and neuroinflammatory response. The findings here reported are based on the scientific evidence and our professional experience that will bring significant progress to regenerative medicine to deal with this condition.
Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Esclerosis Múltiple , Progresión de la Enfermedad , Ejercicio Físico , Humanos , Inflamación/patología , Inflamación/terapia , Esclerosis Múltiple/terapia , SecretomaRESUMEN
Stem cell technology is a powerful tool ready to respond to the needs of modern medicine that is experiencing rapid technological development. Given its potential in therapeutic applications, intellectual property rights (IPR) as a protection resource of knowledge are a relevant topic. Patent eligibility of stem cells has been controversial as restrictions to access the fundamental technologies open a gap between research and clinic. Therefore, we depicted the current patent landscape in the field to discuss if this approach moves forward in closing this breach by examining patent activity over the last decade from a transdisciplinary perspective. Stem cell therapeutic applications is an area of continuous growth where patent filing through the PCT is the preferred strategy. Patenting activity is concentrated in the USA, European Union, and Australia; this accumulation in a few key players leads to governance, regulation, and inequality concerns. To boost wealthiness and welfare in society - stem cell therapies' ultimate goal - while at post-pandemic recovery, critical elements in the field of IPR rise to overcome current limitations: to promote bridge builders able to connect the research and business worlds, regulatory updates, novel financing models, new vehicles (startups, spinouts, and spin-offs), and alternative figures of intellectual property.
Asunto(s)
Propiedad Intelectual , Células Madre , Comercio , Tecnología , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
A cinomose canina é uma doença infectocontagiosa causada pelo vírus Paramyxoviridae, que acomete cães de todas as idades, entretanto principalmente cães filhotes não vacinados. Uma das sequelas da doença é neurológica que, por muitas vezes, é de difícil tratamento. A terapia com células-tronco é uma alternativa para atenuar os sinais e sequelas neurológicas, propiciando melhor qualidade de vida para o animal. As células-tronco são células com alta capacidade de auto renovação e diferenciação, e, portanto, uma alternativa de tratamento para as sequelas neurológicas derivada pela cinomose.
Canine distemper is an infectocontagious disease caused by Paramyxoviridae virus, which affects dogs of all ages, however mainly unvaccinated puppies. Neurological manifestation are common in canine distemper which is often difficult to treat. Stem cell therapy is an alternative to attenuate neurological signs and sequel, providing better quality of life for the animal. Stem cells have high capacity for self-renewal and differentiation, and an alternative treatment for neurological sequel derived by distemper.
Asunto(s)
Animales , Perros , Trasplante de Células Madre/veterinaria , Moquillo/terapia , Células Madre , PerrosRESUMEN
The scant ability of cardiomyocytes to proliferate makes heart regeneration one of the biggest challenges of science. Current therapies do not contemplate heart re-muscularization. In this scenario, stem cell-based approaches have been proposed to overcome this lack of regeneration. We hypothesize that early-stage hiPSC-derived cardiomyocytes (hiPSC-CMs) could enhance the cardiac function of rats after myocardial infarction (MI). Animals were subjected to the permanent occlusion of the left ventricle (LV) anterior descending coronary artery (LAD). Seven days after MI, early-stage hiPSC-CMs were injected intramyocardially. Rats were subjected to echocardiography pre-and post-treatment. Thirty days after the injections were administered, treated rats displayed 6.2% human cardiac grafts, which were characterized molecularly. Left ventricle ejection fraction (LVEF) was improved by 7.8% in cell-injected rats, while placebo controls showed an 18.2% deterioration. Additionally, cell-treated rats displayed a 92% and 56% increase in radial and circumferential strains, respectively. Human cardiac grafts maturate in situ, preserving proliferation with 10% Ki67 and 3% PHH3 positive nuclei. Grafts were perfused by host vasculature with no evidence for immune rejection nor ectopic tissue formations. Our findings support the use of early-stage hiPSC-CMs as an alternative therapy to treat MI. The next steps of preclinical development include efficacy studies in large animals on the path to clinical-grade regenerative therapy targeting human patients.
RESUMEN
INTRODUCTION: The potential of regenerative medicine to improve human health has led to the rapid expansion of stem cell clinics throughout the world with varying levels of regulation and oversight. This has led to a market ripe for stem cell tourism, with Tijuana, Mexico, as a major destination. In this study, we characterize the online marketing, intervention details, pricing of services, and assess potential safety risks through web surveillance of regenerative medicine clinics marketing services in Tijuana. METHODS: We conducted structured online search queries from March to April 2019 using 296 search terms in English and Spanish on two search engines (Google and Bing) to identify websites engaged in direct-to-consumer advertising of regenerative medicine services. We performed content analysis to characterize three categories of interest: online presence, tokens of scientific legitimacy, and intervention details. RESULTS: Our structured online searches resulted in 110 unique websites located in Tijuana corresponding to 76 confirmed locations. These clinics' online presence consisted of direct-to-consumer advertising mainly through a dedicated website (94.5%) or Facebook page (65.5%). The vast majority of these websites (99.1%) did not mention any affiliation to an academic institutions or other overt tokens of scientific legitimacy. Most clinics claimed autologous tissue was the source of treatments (67.3%) and generally did not specify route of administration. Additionally, of the Tijuana clinics identified, 13 claimed licensing, though only 1 matched with available licensing information. CONCLUSIONS: Regenerative medicine clinics in Tijuana have a significant online presence using direct-to-consumer advertising to attract stem-cell tourism clientele in a bustling border region between Mexico and the USA. This study adds to existing literature evidencing the unregulated nature of online stem cell offerings and provides further evidence of the need for regulatory harmonization, particularly to address stem cell services being offered online across borders.
Asunto(s)
Mercadotecnía , Medicina Regenerativa , Humanos , México , Células MadreRESUMEN
A new coronavirus respiratory disease (COVID-19) caused by the SARS-CoV-2 virus, surprised the entire world, producing social, economic, and health problems. The COVID-19 triggers a lung infection with a multiple proinflammatory cytokine storm in severe patients. Without effective and safe treatments, COVID-19 has killed thousands of people, becoming a pandemic. Stem cells have been suggested as a therapy for lung-related diseases. In particular, mesenchymal stem cells (MSCs) have been successfully tested in some clinical trials in patients with COVID-19. The encouraging results positioned MSCs as a possible cell therapy for COVID-19. The amniotic membrane from the human placenta at term is a valuable stem cell source, including human amniotic epithelial cells (hAECs) and human mesenchymal stromal cells (hAMSCs). Interestingly, amnion cells have immunoregulatory, regenerative, and anti-inflammatory properties. Moreover, hAECs and hAMSCs have been used both in preclinical studies and in clinical trials against respiratory diseases. They have reduced the inflammatory response and restored the pulmonary tissue architecture in lung injury in vivo models. Here, we review the existing data about the stem cells use for COVID-19 treatment, including the ongoing clinical trials. We also consider the non-cellular therapies that are being applied. Finally, we discuss the human amniotic membrane cells use in patients who suffer from immune/inflammatory lung diseases and hypothesize their possible use as a successful treatment against COVID-19.
Asunto(s)
Amnios/citología , COVID-19/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre/citología , Ensayos Clínicos como Asunto , Femenino , Humanos , Inflamación , Células Madre Mesenquimatosas/citología , Placenta/citología , Embarazo , RiesgoRESUMEN
OBJECTIVES: The coronavirus disease (COVID-19) outbreak has catastrophically threatened public health worldwide and presented great challenges for clinicians. To date, no specific drugs are available against severe acute respiratory syndrome coronavirus 2. Mesenchymal stem cells (MSCs) appear to be a promising cell therapy owing to their potent modulatory effects on reducing and healing inflammation-induced lung and other tissue injuries. The present pilot study aimed to explore the therapeutic potential and safety of MSCs isolated from healthy cord tissues in the treatment of patients with COVID-19. METHODS: Twelve patients with COVID-19 treated with MSCs plus conventional therapy and 13 treated with conventional therapy alone (control) were included. The efficacy of MSC infusion was evaluated by changes in oxygenation index, clinical chemistry and hematology tests, immunoglobulin (Ig) levels, and pulmonary computerized tomography (CT) imaging. The safety of MSC infusion was evaluated based on the occurrence of allergic reactions and serious adverse events. RESULTS: The MSC-treated group demonstrated significantly improved oxygenation index. The area of pulmonary inflammation decreased significantly, and the CT number in the inflammatory area tended to be restored. Decreased IgM levels were also observed after MSC therapy. Laboratory biomarker levels at baseline and after therapy showed no significant changes in either the MSC-treated or control group. CONCLUSION: Intravenous infusion of MSCs in patients with COVID-19 was effective and well tolerated. Further studies involving a large cohort or randomized controlled trials are warranted.
Asunto(s)
Humanos , Infecciones por Coronavirus , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Cordón Umbilical , Proyectos Piloto , BetacoronavirusRESUMEN
Crohn's disease (CD) is a chronic inflammatory bowel disease that can affect any part of the gastrointestinal tract. The etiology of CD is unknown; however, genetic, epigenetic, environmental, and lifestyle factors could play an essential role in the onset and establishment of the disease. CD results from immune dysregulation due to loss of the healthy symbiotic relationship between host and intestinal flora and or its antigens. It affects both sexes equally with a male to female ratio of 1.0, and its onset can occur at any age, but the diagnosis is most commonly observed in the range of 20 to 40 years of age. CD diminishes quality of life, interferes with social activities, traumatizes due to the stigma of incontinence, fistulae, strictures, and colostomies, and in severe cases, affects survival when compared to the general population. Symptoms fluctuate between periods of remission and activity in which complications such as fistulas, strictures, and the need for bowel resection, surgery, and colostomy implantation make up the most severe aspects of the disease. CD can be progressive and the complications recurrent despite treatment with anti-inflammatory drugs, corticosteroids, immunosuppressants, and biological agents. However, over time many patients become refractory without treatment alternatives, and in this scenario, hematopoietic stem cell transplantation (HSCT) has emerged as a potential treatment option. The rationale for the use of HSCT for CD is anchored in animal studies and human clinical trials where HSCT could reset a patient's immune system by eliminating disease-causing effector cells and upon immune recovery increase regulatory and suppressive immune cells. Autologous HSCT using a non-myeloablative regimen of cyclophosphamide and anti-thymocyte globulin without CD34+ selection has been to date the most common transplant conditioning regimen adopted. In this review we will address the current situation regarding CD treatment with HSCT and emphasize the medical, ethical, and legal aspects that permeate the procedure in Brazil.
RESUMEN
COVID-19 is a disease characterized by a strong inflammatory response in severe cases, which fails to respond to corticosteroid therapy. In the context of the current COVID-19 outbreak and the critical information gaps regarding the disease, several different therapeutic strategies are under investigation, including the use of stem cells. In the present manuscript, we provide an analysis of the rationale underlying the application of stem cells to manage COVID-19, and also a comprehensive compendium of the 69 clinical trials underway worldwide aiming to investigate the application of stem cells to treat COVID-19. Even though data are still scarce, it is already possible to observe the protagonism of China in testing mesenchymal stem cells (MSCs) for COVID-19. Furthermore, it is possible to determine that current efforts focus on the use of multiple infusions of high numbers of stem cells and derived products, as well as to acknowledge the positive results obtained by independent groups who publicized the therapeutic benefits provided by such therapies in 51 COVID-19 patients. In such a rapid-paced field, up-to-date systematic studies and meta-analysis will aid the scientific community to separate hype from hope and offer an unbiased position to the society and governments.
Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus , Brotes de Enfermedades , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Pandemias , Neumonía Viral , COVID-19 , Ensayos Clínicos como Asunto , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Neumonía Viral/terapia , SARS-CoV-2RESUMEN
Purpose: The objective of this study was to describe the short-term results of allogenic transplantation of limbal stem cells expanded on amniotic membrane for the ocular surface reconstruction. Methods: Prospective nonrandomized, nonmasked study in a single ophthalmological center. Ten patients with bilateral total limbal stem cell deficiency (LSCD) were included. Expression and presence of ABCB5 and Δp63α in amniotic membrane-cultured limbal epithelial stem cells were analyzed, in relationship with clinical changes after allogenic transplantation. An objective evaluation was performed to determine corneal transparency and superficial vascularization. Results: In a median follow-up time of 11.6 months, 7 patients (70%) were considered as failure compared with the preoperative status. ABCB5 and Δp63α are expressed in similar amount in the limbal epithelial cells expanded in vitro and transplanted in patients with bilateral LSCD. Conclusions: Transplantation of allogenic epithelial limbal cells expanded in amniotic membrane could be considered in patients with LSCD due to burns or congenital etiologies such as aniridia, but its benefit is limited for patients with immunologic diseases.
Asunto(s)
Amnios/trasplante , Enfermedades de la Córnea/etiología , Epitelio Corneal/trasplante , Limbo de la Córnea/patología , Células Madre/citología , Trasplante Homólogo/métodos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adolescente , Adulto , Amnios/citología , Amnios/metabolismo , Aniridia/complicaciones , Estudios de Casos y Controles , Córnea/irrigación sanguínea , Córnea/metabolismo , Enfermedades de la Córnea/diagnóstico , Enfermedades de la Córnea/metabolismo , Enfermedades de la Córnea/cirugía , Lesiones de la Cornea/complicaciones , Epitelio Corneal/anomalías , Epitelio Corneal/citología , Epitelio Corneal/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Limbo de la Córnea/citología , Limbo de la Córnea/metabolismo , Masculino , México/epidemiología , Persona de Mediana Edad , Ensayos Clínicos Controlados no Aleatorios como Asunto/métodos , Estudios Prospectivos , Trasplante de Células Madre/efectos adversos , Células Madre/metabolismo , Células Madre/patología , Factores de Transcripción/metabolismo , Resultado del Tratamiento , Proteínas Supresoras de Tumor/metabolismo , Adulto JovenRESUMEN
Spinal cord injury (SCI) is a common pathological condition that leads to permanent or temporal loss of motor and autonomic functions. Kainic acid (KA), an agonist of kainate receptors, a type of ionotropic glutamate receptor, is widely used to induce experimental neurodegeneration models of CNS. Mesenchymal Stem Cells (MSC) therapy applied at the injured nervous tissue have emerged as a promising therapeutic treatment. Here we used a validated SCI experimental model in which an intraparenchymal injection of KA into the C5 segment of rat spinal cord induced an excitotoxic lesion. Three days later, experimental animals were treated with an intracerebroventricular injection of human umbilical cord (hUC) MSC whereas control group only received saline solution. Sensory and motor skills as well as neuronal and glial reaction of both groups were recorded. Differences in motor behavior, neuronal counting and glial responses were observed between hUC-MSC-treated and untreated rats. According to the obtained results, we suggest that hUC-MSC therapy delivered into the fourth ventricle using the intracerebroventricular via can exert a neuroprotective or neurorestorative effect on KA-injected animals.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Trasplante de Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal/terapia , Cordón Umbilical/trasplante , Animales , Humanos , Infusiones Intraventriculares , Ácido Kaínico/farmacología , Células Madre Mesenquimatosas/citología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Ratas , Médula Espinal/patología , Médula Espinal/trasplante , Traumatismos de la Médula Espinal/patología , Cordón Umbilical/citologíaRESUMEN
Central nervous system (CNS) trauma is often related to tissue loss, leading to partial or complete disruption of spinal cord function due to neuronal death. Although generally irreversible, traditional therapeutic efforts, such as physical therapy exercises, are generally recommended, but with a poor or reduced improvement of the microenvironment, which in turn stimulates neuroplasticity and neuroregeneration. Mesenchymal stem cells (MSCs) have paracrine, immunomodulatory, and anti-inflammatory effects. Here we use stem cells to see if they can promote not only physical but also the functional regeneration of neuronal tissue in dogs with CNS traumas. Two dogs, one with chronic spinal cord injury and one with subacute spinal cord injury, underwent infusion of autologous MSCs in association with physiotherapy. The two treatments in combination were able to partially or completely recover the dog's walking movement again. The treatment of MSCs in association with physical therapy improved the microenvironment, which could be evidence of a paradigm shift that the CNS is not capable of functional regeneration after aggressive traumas. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1812-1820, 2020. © 2019 American Association for Anatomy.
Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Regeneración Nerviosa/fisiología , Paraplejía/veterinaria , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/veterinaria , Animales , Perros , Paraplejía/etiología , Paraplejía/terapia , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , TerapéuticaRESUMEN
The immune stimulatory and anti-neoplastic functions of type I interferon have long been applied for the treatment of melanoma. However, the systemic application of high levels of this recombinant protein is often met with toxicity. An approach that provides localized, yet transient, production of type I interferon may overcome this limitation. We propose that the use of mesenchymal stem cells (MSCs) as delivery vehicles for the production of interferon-β (IFNβ) may be beneficial when applied together with our cancer gene therapy approach. In our previous studies, we have shown that adenovirus-mediated gene therapy with IFNβ was especially effective in combination with p19Arf gene transfer, resulting in immunogenic cell death. Here we showed that MSCs derived from mouse adipose tissue were susceptible to transduction with adenovirus, expressed the transgene reliably, and yet were not especially sensitive to IFNβ production. MSCs used to produce IFNβ inhibited B16 mouse melanoma cells in a co-culture assay. Moreover, the presence of p19Arf in the B16 cells sensitizes them to the IFNβ produced by the MSCs. These data represent a critical demonstration of the use of MSCs as carriers of adenovirus encoding IFNβ and applied as an anti-cancer strategy in combination with p19Arf gene therapy.
Asunto(s)
Animales , Masculino , Conejos , Melanoma Experimental/terapia , Interferón beta/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/administración & dosificación , Células Madre Mesenquimatosas/metabolismo , Transducción Genética , Melanoma Experimental/metabolismo , Terapia Genética , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BLRESUMEN
OBJECTIVES: Mesenchymal stem cells (MSCs) are potentially ideal for type 2 diabetes treatment, owing to their multidirectional differentiation ability and immunomodulatory properties. Here we investigated whether the stem cells from human exfoliated deciduous teeth (SHED) in combination with hyperbaric oxygen (HBO) could treat type 2 diabetic rats, and explored the underlying mechanism. METHODS: SD rats were used to generate a type 2 diabetes model, which received stem cell therapy, HBO therapy, or both together. Before and after treatment, body weight, blood glucose, and serum insulin, blood lipid, pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), and urinary proteins were measured and compared. After 6 weeks, rats were sacrificed and their organs were subjected to hematoxylin and eosin staining and immunofluorescence staining for insulin and glucagon; apoptosis and proliferation were analyzed in islet cells. Structural changes in islets were observed under an electron microscope. Expression levels of Pdx1, Ngn3, and Pax4 mRNAs in the pancreas were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: In comparison with diabetic mice, those treated with the combination or SHE therapy showed decreased blood glucose, insulin resistance, serum lipids, and pro-inflammatory cytokines and increased body weight and serum insulin. The morphology and structure of pancreatic islets improved, as evident from an increase in insulin-positive cells and a decrease in glucagon-positive cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining of islet cells revealed the decreased apoptosis index, while Ki67 and proliferating cell nuclear antigen staining showed increased proliferation index. Pancreatic expression of Pdx1, Ngn3, and Pax4 was upregulated. CONCLUSION: SHED combined with HBO therapy was effective for treating type 2 diabetic rats. The underlying mechanism may involve SHED-mediated increase in the proliferation and trans-differentiation of islet β-cells and decrease in pro-inflammatory cytokines and apoptosis of islets.
Asunto(s)
Humanos , Animales , Masculino , Ratones , Ratas , Trasplante de Células Madre Mesenquimatosas , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Células Secretoras de Insulina , Oxigenoterapia Hiperbárica/métodos , Células Madre , Diente Primario , China , Ratas Sprague-Dawley , Diabetes Mellitus Tipo 2/inducido químicamente , Células Madre Mesenquimatosas , InsulinaRESUMEN
The objective of this study was to compare standard treatment versus the combination of intrapancreatic autologous stem cell (ASC) infusion and hyperbaric oxygen treatment (HBOT) before and after ASC in the metabolic control of patients with type 2 diabetes mellitus (T2DM). This study was a prospective, randomized controlled trial. The combined intervention consisted of 10 sessions of HBOT before the intrapancreatic infusion of ASC and 10 sessions afterwards. ASCs were infused into the main arterial supply of the pancreas to maximize the presence of the stem cells where the therapeutic effect is most desired. A total of 23 patients were included (control group = 10, intervention group = 13). Age, gender, diabetes duration, number of medications taken, body weight and height, and insulin requirements were recorded at baseline and every three months. Also, body mass index, fasting plasma glucose, C-peptide, and HbA1c, C-peptide/glucose ratio (CPGR) were measured every three months for one year. HbA1c was significantly lower in the intervention group compared with control throughout follow-up. Overall, 77% of patients in the intervention group and 30% of patients in the control group demonstrated a decrease of HbA1c at 180 days (compared with baseline) of at least 1 unit. Glucose levels were significantly lower in the intervention group at all timepoints during follow-up. C-peptide levels were significantly higher in the intervention group during follow-up and at one year: 1.9 ± 1.0 ng/mL versus 0.7 ± 0.4 ng/mL in intervention versus control groups, respectively, p = 0.0021. CPGR was higher in the intervention group at all controls during follow-up. The requirement for insulin was significantly lower in the intervention group at 90, 180, 270, and 365 days. Combined therapy of intrapancreatic ASC infusion and HBOT showed increased metabolic control and reduced insulin requirements in patients with T2DM compared with standard treatment.
Asunto(s)
Trasplante de Médula Ósea , Diabetes Mellitus Tipo 2/terapia , Oxigenoterapia Hiperbárica , Anciano , Diabetes Mellitus Tipo 2/sangre , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Trasplante AutólogoRESUMEN
This study aimed to histologically evaluate the quality of tissue repair in equine suspensory ligament treated with two cell therapy protocols. All four limbs of six animals were operated simultaneously to remove a fragment in each ligament using a skin biopsy punch. Two days later, intralesional injections were performed using bone marrow mononuclear fraction (BM group), cultivated cells derived from adipose tissue (AT group), saline (positive control group), or no treatment (negative control group), in such way that each horse received all treatments. After sixty days biopsies were performed for histological analysis (H & E, Masson's trichrome and picrosirius red) and immunohistochemistry analysis (collagen type III). Histological findings (H & E and Masson's trichrome), birefringence intensity (through picrosirius) and collagen type III expression (through immunohistochemistry) were analyzed. Samples from treated groups had better birefringence intensity (P=0.007) and fiber alignment scores were superior compared to controls, though not statistically significant (P=0.08). Presence of inflammatory cells and intense staining for collagen type III occurred in all groups demonstrating an active healing process. In conclusion, both protocols resulted in improvement of tissue repair indicating their potential to be used as an adjuvant treatment of equine suspensory ligament disorders.(AU)
Este estudo teve como objetivo a avaliação histológica e imunoistoquímica do reparo do ligamento suspensório equino tratado com dois protocolos de terapia celular. Os quatro membros dos seis animais do experimento foram submetidos a procedimento cirúrgico em que um fragmento de cada ligamento foi retirado, utilizando-se punch de biópsia. Dois dias após o procedimento, aplicações intralesionais foram realizadas, por meio de aspirado de medula óssea (bone marrow-BM), células mesenquimais derivadas de tecido adiposo (adipose tissue-AT), solução salina (positive control group-PC) ou controle (negative control-NC). Após 60 dias, biópsias foram retiradas da região de reparo dos ligamentos e foram submetidas à análise histológica (HE, tricrômio de Masson, picrosírius red) e imunoistoquímica (colágeno tipo III). Diferentes variáveis histológicas (HE e tricrômio de Masson), a intensidade de birrefringência das fibras colágenas (picrosírius red) e a expressão de colágeno tipo III foram avaliadas. Os grupos tratados apresentaram maior birrefringência (P=0,007) e alinhamento de fibras (P=0,08) comparados ao controle, para o qual o resultado não se mostrou estatisticamente significativo. Achados histológicos e imunoistoquímicos demonstraram um processo ativo de reparo tecidual em todos os grupos. Concluiu-se que os dois protocolos de terapia celular apresentaram melhora no reparo tecidual, demonstrando potencial terapêutico adjuvante no tratamento de afecções do ligamento suspensório equino.(AU)