Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 191: 114713, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059913

RESUMEN

This study aimed to explore the effects of various lipids on the structure, cooking quality, and in vitro starch digestibility of extruded buckwheat noodles (EBNs) with and without 20% high-amylose corn starch (HACS). Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction revealed that lauric acid bound more strongly to starch than did stearic acid and oleic acid, and the binding capacity of fatty acids with starch was stronger than that of glycerides. The presence of HACS during extrusion facilitated increased formation of starch-lipid complexes. Evaluations of cooking quality and digestion characteristics showed that EBNs containing 20% HACS and 0.5% glycerol monooleate demonstrated the lowest cooking loss (7.28%), and that with 20% HACS and 0.5% oleic acid displayed the lowest predicted glycemic index (pGI) (63.54) and highest resistant starch (RS) content (51.64%). However, excessive starch-lipid complexes were detrimental to EBNs cooking quality and the resistance of starch to digestive enzymes because of the damage to the continuity of the starch gel network. This study establishes a fundamental basis for the development of EBNs with superior cooking quality and a relatively lower GI.


Asunto(s)
Culinaria , Digestión , Fagopyrum , Ácidos Grasos , Almidón , Fagopyrum/química , Ácidos Grasos/química , Almidón/química , Glicéridos/química , Índice Glucémico , Espectroscopía Infrarroja por Transformada de Fourier , Amilosa/química , Difracción de Rayos X , Rastreo Diferencial de Calorimetría , Ácidos Esteáricos/química , Ácido Oléico/química , Ácidos Láuricos/química
2.
Carbohydr Polym ; 342: 122400, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048199

RESUMEN

Previous RS5 (type 5 resistant starch) research has significantly broadened starch use and benefited society, yet the effects of the molecular weight of amylose on RS5 remain underexplored. In this study, amyloses with different molecular weights were complexed with caproic acid (C6), lauric acid (C12), and stearic acid (C18) to observe the effects of the molecular weight of amylose on the structure and in vitro digestive properties of RS5. Gel permeation chromatography revealed that the peak average molecular weight (Mp) values of high-amylose cornstarch NF-CGK (CGK), high-amylose cornstarch obtained via cornstarch via autoclave (high temperature and high pressure)-cooling combined pullulanase enzymatic hydrolysis (CTE), and high-amylose cornstarch NF-G370 (HCK) were 21,282, 171,537, and 188,084 before fatty acid complexation, respectively. Additionally, their weight average molecular weight (Mw) values of 32,429, 327,344, and 410,610 and hydrolysis rates of 58.12 %, 86.77 %, and 64.58 %, respectively. The hydrolysis rate of low-Mw amylose (GCK) complexes with fatty acids was lower than that of HCK and CTE starch-lipid complexes. However, HCK and CTE having similar molecular weights, there was no significant difference in the hydrolysis rate of starch-lipid complexes. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and complexing index analyses confirmed the formation of these complexes. This study proposed the mechanism of RS5 formation and provided guidance for its future development.


Asunto(s)
Amilosa , Ácidos Láuricos , Peso Molecular , Amilosa/química , Ácidos Láuricos/química , Hidrólisis , Almidón/química , Almidón/metabolismo , Digestión , Ácidos Esteáricos/química , Lípidos/química , Caprilatos
3.
J Food Sci ; 89(7): 4205-4215, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847754

RESUMEN

The present study investigated the effects of different deep-frying times and temperatures on the amylose content, crystal structure, thermodynamics, and other properties of deep-fried dough sticks. Results showed that the change of amylose content in deep-fried dough sticks during the deep-frying process was positively correlated with time and temperature. Moreover, the deep-frying process of deep-fried dough sticks was accompanied by the formation of starch-lipid complexes that led to the destruction of starch structure. The degreased sample and the oil sample had the same absorption peaks at 2854 and 1746 cm-1, respectively. The melting enthalpy (ΔH) of the starch-lipid complex decreased significantly. In addition, the viscosity of starch reduced as the deep-frying time and temperature increased. Furthermore, it was found that the effect of increasing deep-frying temperature was greater than that of time. PRACTICAL APPLICATION: As a popular deep-fried food, the main component of deep-fried dough sticks is starch. Starch gelatinization, protein denaturation, and interaction among components occurred during deep-frying. At present, there are few studies focusing on the properties of starch in deep-fried dough sticks in the real deep-frying system. Therefore, this study provided a theoretical basis for subsequent research by measuring the effects of different deep-frying conditions on the properties of starch in deep-fried dough sticks.


Asunto(s)
Amilosa , Culinaria , Ácidos Grasos , Almidón , Termodinámica , Triticum , Almidón/química , Triticum/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Amilosa/química , Amilosa/análisis , Viscosidad , Culinaria/métodos , Calor , Harina/análisis
4.
Int J Biol Macromol ; 267(Pt 1): 131355, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604433

RESUMEN

This study examined the influence of various pretreatment methods, frying durations, and temperatures, as well as the type of frying oil, on the formation and structure of starch-lipid complexes in fried potato chips. Potato starch was processed into dough, sliced, and subjected to deep frying following various pretreatments. Structural analysis showed that steaming as a pretreatment facilitated the generation of V-type starch-lipid complexes, whereas resistant starch type III (RS3) materialized in the desiccated samples instead of the anticipated complexes. The rate of starch-lipid complex formation initially surged but subsequently declined as treatment time increased. A reduction in treatment temperature from 190 °C to 170 °C was conducive to complex formation. Moreover, the maximum relative crystallinity (19.74 %) and ΔH value (7.76 J/g) were recorded for potato starch slices pretreated by steaming and frying in palm oil. Rapeseed oil, which is rich in unsaturated fatty acids (89.98 %), inhibits complex formation. The study concludes that pretreatment methods exert a substantial effect on the formation of starch-lipid complexes and that extended frying duration and elevated temperature may reduce this formation. Oils with longer-chain fatty acids and a lower degree of unsaturation were favorable for complex formation.


Asunto(s)
Culinaria , Calor , Solanum tuberosum , Almidón , Solanum tuberosum/química , Almidón/química , Lípidos/química
5.
Foods ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38540849

RESUMEN

Starch-lipid complexes were prepared from high amylose starch (HAS) with stearic acid (SA) or potassium stearate (PS) at different molar concentrations. The complexes (HAS-PS) formed between HAS and PS showed polyelectrolyte characteristics with ζ-potential ranging from -22.2 to -32.8 mV, and the electrostatic repulsion between anionic charges restricted the starch chain reassociation and facilitated the formation of V-type crystalline structures upon cooling. The hydrophobic effects enabled recrystallization of the SA, and the HAS-SA complexes exhibited weaker V-type crystalline structures than the HAS-PS complexes; both HAS-SA/PS complexes were of a similar "mass fractal" type, with a dimension varied from 2.15 to 2.96. The HAS-SA complexes had a considerable content of resistant starch (RS, 16.1~29.2%), whereas negligible RS was found in the HAS-PS complexes. The findings from the present study imply that the molecular order of starch chains and the macro-structures of starch particles are more important to regulate the digestibility of starch-lipid complexes than the crystalline structures.

6.
Int J Biol Macromol ; 264(Pt 2): 130719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460625

RESUMEN

The starch digestibility of flour is influenced by both physicochemical treatment and flour particle size, but the interactive effect of these two factors is still unclear. In this study, the effect of pullulanase debranching, combined with heat-moisture treatment (P-HMT), on starch digestibility of multi-grain flours (including oat, buckwheat and wheat) differing in particle size was investigated. The results showed that the larger-size flour always resulted in a higher resistant starch (RS) content either in natural or treated multi-grain flour (NMF or PHF). P-HMT doubled the RS content in NMFs and the large-size PHF yielded the highest RS content (78.43 %). In NMFs, the cell wall integrity and flour particle size were positively related to starch anti-digestibility. P-HMT caused the destruction of cell walls and starch granules, as well as the formation of rigid flour aggregates with B + V starch crystallite. The largest flour aggregates with the most ordered B + V starch were found in large-size PHF, which contributed to its highest RS yield, while the medium- and small-size PHFs with smaller aggregates were sensitive to P-HMT, resulting in the lower ordered starch but stronger interactions between starch and free lipid or monomeric proteins, eventually leading to their lower RS but higher SDS yield.


Asunto(s)
Harina , Almidón , Almidón/química , Harina/análisis , Grano Comestible/metabolismo , Tamaño de la Partícula , Almidón Resistente , Digestión , Calor
7.
Food Chem ; 441: 138280, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38176139

RESUMEN

In this study, waxy corn starch (WCS) was modified by amylosucrase and pullulanase, producing linear starch chains with elongated length that favored the complexation with unsaturated fatty acids (uFAs). Compared to native WCS, the amylosucrase-modified WCS with an average chain length of 47.8 was easier to form V-type complexes with oleic acid, while increasing the degree of unsaturation impeded the formation of V-type complexes. The pullulanase treatment hydrolyzed the branching points of amylosucrase-modified WCS and the linear starch chains could forme V-type complexes with oleic acid, linoleic acid, and linolenic acid, with V-type crystallinity decreasing from 38.2 % to 20.1 %. V-type complexes had a lower thermal stability than the B-type starch crystallites, and their peak melting temperature ranged from 67.2 to 79.0 °C. The content of resistant starch in the complexes was in the range of 21.8 %-40.9 % and the formation of V-type complexes decreased the susceptibility of uFAs to oxygen.


Asunto(s)
Amilopectina , Almidón , Almidón/química , Amilopectina/química , Ácidos Grasos Insaturados , Temperatura , Ácido Oléico , Zea mays/química , Ácidos Grasos
8.
Int J Biol Macromol ; 260(Pt 2): 129526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242387

RESUMEN

A model system of gelatinized wheat starch (GWS) and lauric acid (LA) was used to examine the effect of residual short-range molecular order in GWS on the formation of starch-lipid complexes. The extent of residual short-range molecular order, as determined by Raman spectroscopy, decreased with increasing water content or heating duration of gelatinization. The enthalpy changes, crystallinity, short-range molecular order and the in vitro enzymic digestion of GWS-LA complexes increased initially to a maximum and then declined as the short-range molecular order in GWS decreased, showing that there was an optimal amount of residual short-range molecular order in GWS for maximizing GWS-LA complexes formation. Below this optimum amount, the limited disruption of short-range molecular order may constrain the mobility of amylose chains for complexation with LA, whereas with excessive disruption above this amount the amylose chains may be too disorganized or entangled to form complexes with LA. The susceptibility of GWS-LA complexes to enzymatic hydrolysis was influenced by both long- and short-range structural order, and to a lesser extent the amounts of complexes. This study showed clearly the role of short-range molecular order in gelatinized starch in influencing the formation of GWS-LA complexes.


Asunto(s)
Amilosa , Almidón , Almidón/química , Amilosa/química , Ácidos Láuricos/química , Hidrólisis
9.
Int J Biol Macromol ; 257(Pt 1): 128647, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056152

RESUMEN

The aim of this study was to investigate the effect of plasma-activated water (PAW) during extrusion on the formation of endogenous starch complexes with wheat starch (WS) as a model material. Using PAW during the extrusion process resulted in an increase in amylose content from 27.87 % to 30.07 %. Results from Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry indicated that the PAW facilitated the formation of endogenous starch-lipid complexes during extrusion. PAW120 (distilled water treated by plasma for 120 s) showed a better promotion effect than PAW60 (distilled water treated by plasma for 60 s). EWS120 (WS extruded using PAW120) exhibited lower peak viscosity and swelling power, but higher solubility, particle size, and resistant starch content compared with EWS0 (WS extruded using distilled water) and EWS60 (WS extruded using PAW60). In a word, the acidic substances in PAW may lead to hydrolysis of starch and generate more amylose, thus improving the amount of endogenous starch-lipid complexes. The present study provides a novel extrusion method to obtain modified starch with higher RS content than common extrusion, which has potential application in the industrial production of functional foods with low glycemic index.


Asunto(s)
Amilosa , Almidón , Almidón/química , Amilosa/química , Triticum/química , Agua/química , Difracción de Rayos X , Lípidos
10.
Carbohydr Polym ; 318: 121107, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479452

RESUMEN

This study aimed to investigate the effects of fatty acid (FA) type on the binding state, fine structure, and digestibility of debranched maize starch (DMS)-FA complexes with different enzymatic debranching degrees. Maize starch was hydrolyzed by pullulanase for 1 h (DMS1h) and 6 h (DMS6h) and then complexed with seven types of FAs with varying chain lengths and unsaturation degrees, respectively. All the DMS-FA complexes showed V6III-type and B-type crystals. Complex formation greatly increased the relative crystallinity of DMS, but significantly decreased its order degree of short-range structure (p < 0.05). Compared with unsaturated FAs, saturated FAs possessed stronger intermolecular interactions with DMS. DMS6h-FA complexes exhibited a markedly higher complexing degree (p < 0.05) than the corresponding DMS1h-FA complexes. The FA molecules in DMS1h-FA complexes were primarily physically trapped outside the amylose helices, whereas those in DMS6h-FA complexes were mainly weakly bound to the cavity of amylose helices. The resistant starch (RS) content and relative crystallinity of DMS-FA complexes considerably increased with increasing FA chain length. Furthermore, the highest RS content (38.90 %) and relative crystallinity (24.23 %) were observed in DMS6h-FA complexes. The FA unsaturation degree induced little effect on the RS content and long-range structural order of the complexes.


Asunto(s)
Amilosa , Almidón , Almidón Resistente , Ácidos Grasos , Digestión
11.
Int J Biol Macromol ; 242(Pt 4): 125191, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270130

RESUMEN

In this study, chain-elongated waxy corn starch (mWCS) was complexed with lauric acid (LA) to produce starch-lipid complexes (mWCS@LA) with a mixture of B- and V-type crystalline structures. Results from in vitro digestion showed that mWCS@LA had higher digestibility than mWCS, and the logarithm of slope plots of mWCS@LA revealed a two-stage digestion pattern, with digestion rate of the first stage (k1 = 0.038 min-1) being much higher than that of the following stage (k2 = 0.0116 min-1). The complexation between the long branch chains of mWCS and LA formed amylopectin-based V-type crystallites that were rapidly hydrolyzed during the first stage. The digesta isolated from the second stage of digestion had a B-type crystallinity of 52.6 %, and starch chains with degree of polymerization of 24-28 mainly contributed to the formation of the B-type crystalline structure. The results from the present study reveal that the B-type crystallites were more resistant to amylolytic hydrolysis than the amylopectin-based V-type crystallites.


Asunto(s)
Amilopectina , Almidón , Almidón/química , Amilopectina/química , Amilosa/química , Zea mays/química , Hidrólisis , Digestión
12.
Int J Biol Macromol ; 237: 124187, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36990406

RESUMEN

In this work, Corn Starch (CS)-Lauric acid (LA) complexes prepared by different ultrasound times were explored for multi-scale structure and digestibility. The results showed that the average molecular weight of the CS decreased from 380.478 to 323.989 kDa and the transparency increased to 38.55 % after 30 min of ultrasound treatment. The scanning electron microscope (SEM) results revealed a rough surface and agglomeration of the prepared complexes. The complexing index of the CS-LA complexes increased by 14.03 % compared to the non-ultrasound group. The prepared CS-LA complexes formed a more ordered helical structure and a more dense V-shaped crystal structure through hydrophobic interactions and hydrogen bonding. In addition, fourier transforms infrared spectroscopy and the molecular docking revealed that the hydrogen bonds formed by CS and LA promoted the formation of an ordered structure of the polymer, retarding the diffusion of the enzyme and thus reducing the digestibility of the starch. With correlation analysis, we provided insight into the multi-scale structure-digestibility relationship in the CS-LA complexes, which provided a basis for the relationship between structure and digestibility of lipid-containing starchy foods.


Asunto(s)
Almidón , Almidón/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Enlace de Hidrógeno , Peso Molecular
13.
Int J Biol Macromol ; 226: 1588-1596, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36455819

RESUMEN

The effects of different dosage of NaCl and sucrose on the structural and functional properties of debranched quinoa starch-oleic acid complexes (DQS-OA) under baking were investigated. The results showed that the resistant starch content of the baked DQS-OA increased by 17.15 % than DQS-OA. The addition of NaCl destroyed the thermal stability, short-range molecular order and crystalline structure of the complexes. The results of particle size, SEM and amylose content showed that NaCl accelerated the degradation of starch granules, which reduced the enzyme resistance of starch. In contrast, the enthalpy (7.28 J/g-7.78 J/g) and crystallinity (54.29 %-56.69 %) of the samples with sucrose significantly increased, and the molecular structure of the complexes became more ordered. Furthermore, with the increase of sucrose concentration, the resistant starch content also increased from 28.80 % to 31.41 %.


Asunto(s)
Chenopodium quinoa , Almidón , Almidón/química , Chenopodium quinoa/química , Ácido Oléico , Cloruro de Sodio/farmacología , Almidón Resistente , Amilosa/química
14.
J Sci Food Agric ; 103(4): 2146-2154, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36574261

RESUMEN

BACKGROUND: A starch-lipid complex is a new type of resistant starch, which is of great importance for the prevention of chronic diseases such as diabetes. Most starch-lipid complexes usually need to be treated by heating to make them suitable for a variety of applications, and starch-based foods are generally not edible without a heat-treatment process. However, the digestion and structural properties of the starch-lipid complex will be changed after heating. In this study, microwave and conventional heating were used to treat debranched quinoa starch-oleic acid complexes (DQS-OA) with different water addition conditions, and the effects of the two methods on the physicochemical, digestive, and structural properties of DQS-OA were compared. RESULTS: The results of in vitro digestibility showed that the resistant starch content (235.34-269.55 g kg-1 ) of the conventional heating-treated samples was significantly higher than that the microwave-treated samples (141.51-157.99 g kg-1 ). Moreover, after microwave treatment, the short-range molecular order and crystalline structure of DQS-OA were destroyed and the particle size became smaller. In contrast, the thermal stability, enthalpy, and crystallinity of the complexes after conventional heating were improved. The ratio at 1047/1022 cm-1 of complexes has also been increased. CONCLUSION: This study demonstrated that conventional water-bath heating was better than microwave heating in increasing digestion resistance, improving the short-range and long-range molecular order, and promoting the formation of DQS-OA. With an increase in water addition, the influence of microwave or water-bath treatment on the properties of DQS-OA became greater. © 2022 Society of Chemical Industry.


Asunto(s)
Chenopodium quinoa , Almidón , Almidón/química , Ácido Oléico , Almidón Resistente , Microondas , Agua , Calefacción
15.
Food Chem ; 398: 133847, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35969997

RESUMEN

In this study, waxy corn starch (WCS) was enzymatically modified by amylosucrase, followed by complexation with lauric acid (LA) to produce starch-lipid complexes. Compared to the native WCS with average chain length (CL¯) of 25.4, the amylosucrease-modified WCSs showed a significantly higher CL¯ ranging from 29.3 to 52.5. The complexation with lauric acid inhibited the reassociation of starch chains, producing V-type complexes with crystallinity reached as much as 42.4 %. Besides, the melting of V-type complexes presented endothermic peaks at Tp of 55.1-60.4 °C, and thermal stability of V-type complexes had a negative correlation with the V-type crystallinity. In vitro digestion implies that the formation of V-type complexes gradually increased the content of rapidly digestible starch and accordingly decreased the content of resistant starch. This study may provide an efficient technology to produce V-type starch-lipid complexes with controllable physical and digestion properties using waxy starch as substrate.


Asunto(s)
Almidón , Zea mays , Amilopectina/química , Almidón/química , Zea mays/química
16.
Foods ; 12(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38231872

RESUMEN

Nowadays, medium chain triglycerides (MCT) with special health benefits have been increasingly applied for fortifying food products. Therefore, the present work aimed to investigate the effects of MCT on traditional tea polyphenols-fortified cooked rice (TP-FCR). It was visualized by DSC, CLSM, XRD, FT-IR, and Raman spectroscopy. The higher content of starch-MCT complexes with an increase in the relative crystallinity and the generation of short-range ordered structures contributed to a more ordered and compact molecular arrangement, which can hinder the action of digestive enzymes on starch. SEM demonstrated that MCT transformed the microstructure of TP-FCR into a denser and firmer character, making it an essential component hindering the accessibility of digestive enzymes to starch granules and slowing the release of tea polyphenols in TP-FCR to attenuate starch digestion. Consequently, the addition of MCT reduced the polyphenol-regulated starch digestibility from 74.28% in cooked white rice to 64.43% in TP-FCR, and further down to 50.82%. Besides, MCT also reduced the adhesiveness and improved the whiteness of TP-FCR. The findings suggested that MCT incorporation could be a potential strategy in cooked rice production to achieve high sensory quality and low glycemic cooked rice.

17.
Foods ; 11(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36230159

RESUMEN

In the present study, maize starch (MS), potato starch (PS), high-amylose maize starch (HAMS), and wheat starch (WS) were deep-fried in soybean oil that was continuously heated for 40 h under 180 °C. The thermodynamic and pasting properties of deep-fried starch samples were determined. The results suggested that starch−lipid complexes formed with the extension of frying oils' usage; however, their number was not dependent on the frying oils' life cycle. Importantly, the results of pasting properties revealed the following strength of intermolecular force in deep-fried starch samples: PS > MS > HAMS > WS. The results of XRD and FTIR analysis confirmed the formation of starch−lipid complexes during the deep-frying process. Furthermore, the results of the in vitro digestibility of deep-fried starch revealed that the formation of starch−lipid complexes inhibited the swelling of starch granules and prevented the entrance of amylase into the interior. Additionally, the results of the oxidation stability of deep-frying oil indicated that the formation of starch−lipid complexes did not alter the trend of lipid oxidation as an effect of the limited number of starch−lipid complexes. These results could have critical implications for the development of healthier deep-fried foods.

18.
J Sci Food Agric ; 102(13): 5837-5848, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35426124

RESUMEN

BACKGROUND: The formation of starch-lipid complexes is of interest to food processing and human nutrition. Fatty acid (FA) structure is important for the formation and structure of starch-FA complexes. However, there is limited research regarding the complexing behavior between amylose and different kinds of FAs, as well as the relationship between fine structures and digestibility of the formed complexes. This study aimed to investigate the behavior, fine structure, and digestibility of complexes formed between high amylose maize starch (HMS) and FA having various chain lengths and unsaturation degrees. RESULTS: Complexes containing different FA structures showed V6III -type crystals. Complexes containing 18-carbon unsaturated FAs displayed significantly higher complexing index (P < 0.05) than other complexes. Complexes containing 12-carbon FAs and 18-carbon FAs with one unsaturation degree showed a higher degree of structural order and resistant starch (RS) content than other complexes. The 12-carbon FAs exhibited a higher binding degree with helical cavity of amylose than other FAs. Additionally, 10-carbon and 18-carbon saturated FAs tended to combine with HMS outside amylose helices more than other FAs. Laser confocal micro-Raman imaging revealed that the physically embedded 10-carbon and 18-carbon saturated FAs showed heterogeneous distribution in complexes, and that the complexed 18-carbon FAs with one unsaturation degree exhibited homogeneous distribution. CONCLUSION: The behavior, structural order and digestibility of complexes could be regulated by FA structure. The 12-carbon FAs and 18-carbon FAs with one unsaturation degree were more suitable for the production of HMS-FA complexes with higher structural order and RS content than other FAs. © 2022 Society of Chemical Industry.


Asunto(s)
Amilosa , Zea mays , Amilosa/química , Carbono/metabolismo , Ácidos Grasos/química , Humanos , Almidón/química , Zea mays/química
19.
J Food Sci Technol ; 59(4): 1440-1449, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35241859

RESUMEN

The aim of the study was to evaluate the impact of selected fatty acids: palmitic, stearic or oleic on functional properties of cassava and wheat starches. Effectiveness of complexation procedure was evaluated by determination of complexing index, lipids content and fatty acid composition. Native starches and their complexes with fatty acids were analyzed for water binding capacity and solubility in water, in vitro digestibility, pasting characteristic and rheological properties. On the basis of the obtained results it was found that values of complexing index values for both starches complexed with oleic acid were remarkably higher than those determined in palmitic or stearic counterparts. Starches complexation with fatty acids resulted in a significant increase in the percentage share of used fatty acid in total fatty acid composition. Presence of oleic acid in cassava starch significantly limited its water binding capacity and solubility in water. Complexation with all fatty acids used in the study resulted in an increase in final viscosity and rheological stability of cassava starch pastes. Wheat starch complexes with fatty acids were characterised by higher pasting temperatures as compared to non-complexed counterpart, with the greatest effect observed for starch-oleic acid complex. In most cases complexation of starches with fatty acids contribute to an increase in contents of resistant starch fraction. Analysis of rheological model parameters revealed that procedure of oleic acid complexation increased by twice the values of consistency coefficient, and significantly decreased flow index of both wheat and cassava starches. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05153-x.

20.
Food Chem ; 382: 132319, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35134725

RESUMEN

This study investigated the impact of microwave treatment on the formation of starch-lipid complexes, and physicochemical properties of wheat starch (WS) fortified with lipids, such as lauric acid (LA), glycerol monolaurate (GML), and stearic acid (SA). Specimens were prepared using a conventional water bath and microwave heating and evaluated using macrostructural and microstructural analyses. Iodine staining and scanning electron microscopy revealed interplay between WS and LA. Diffraction peaks around 7.5°, 13°, and 20° and the absence of the absorption band in the 2850 cm-1 were observed in microwave treated WS-lipid samples than conventional water bath samples. Further, more type I complexes were formed in WS-LA microwave-assisted samples, as demonstrated by differential scanning calorimetry. Additionally, more resistant starch was formed in specimens treated by microwave than water bath treated counterparts, the finding that was proved by in vitro enzymatic hydrolysis. In short, the current study may suggest the applications of microwave treatment in foods for hypoglycemia.


Asunto(s)
Calefacción , Almidón , Rastreo Diferencial de Calorimetría , Microondas , Almidón/química , Triticum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA