Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Environ Manage ; 350: 119637, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38000274

RESUMEN

Woodchips in stand-off pads for wintering cows have been applied in countries like Ireland and New Zealand. Their primary role is to protect soils by effectively filtering nutrients during wet conditions, while ensuring a healthy and comfortable environment for the cows. The stand-off pad concept has the potential to be adopted in Canada to provide year-long outdoor access to tie-stall dairy cows. The objective of this study was to evaluate the effect of alternative filtering materials and bed aeration under controlled laboratory conditions. Twelve biofilter columns (0.3 m in diameter and 1-m high) were installed in 12 environmentally-controlled chambers (1.2-m wide by 2.4-m long), and divided into four treatments: a bed of conventional woodchips or an alternative mix of organic materials (sphagnum peat moss, woodchips and biochar) with and without aeration (flux rate set at 0.6 m3/min/m2). Approximately 0.6 L of semi-synthetic dairy manure and 1 L of tap water were poured on the biofilters during two experimental periods of 4 weeks, simulating the effect of either winter or summer conditions (room temperature below or over 10 °C) on the retention of nutrients and fecal bacteria. Results showed that the alternative biofilters under both summer and winter conditions were more efficient in removing COD, SS, TN, and NO3-N than conventional biofilters (maximum efficiencies of 97.6%, 99.7%, 96.4%, and 98.4%, respectively). Similarly for E. coli, they achieved a minimum concentration of 1.8 Log10 CFU/100 ml. Conventional biofilters were more efficient for PO4-P removal with a maximum efficiency of 88.2%. Aeration did not have any significant effect under the tested temperature conditions. Additional factors such as media adaptation time as well as aeration flow during this period should be considered.


Asunto(s)
Escherichia coli , Estiércol , Femenino , Animales , Bovinos , Temperatura , Heces , Nutrientes , Filtración/métodos
2.
Sensors (Basel) ; 23(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37765793

RESUMEN

Stand-off detection of latent traces avoids the scene alteration that might occur during close inspection by handheld forensic lights. Here, we describe a novel sensor, named Crime Light Imaging (CLI), designed to perform high-resolution photography of targets at a distance of 2-10 m and to visualize some common latent traces. CLI is based on four high-power illumination LEDs and one color CMOS camera with a motorized objective plus frontal filters; the LEDs and camera could be synchronized to obtain short-exposure images weakly dependent on the ambient light. The sensor is integrated into a motorized platform, providing the target scanning and necessary information for 3D scene reconstruction. The whole system is portable and equipped with a user-friendly interface. The preliminary tests of CLI on fingerprints at distance of 7 m showed an excellent image resolution and drastic contrast enhancement under green LED light. At the same distance, a small (1 µL) blood droplet on black tissue was captured by CLI under NIR LED, while a trace from 15 µL semen on white cotton became visible under UV LED illumination. These results represent the first demonstration of true stand-off photography of latent traces, thus opening the way for a completely new approach in crime scene forensic examination.

3.
Results Chem ; : 100210, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34642620

RESUMEN

Research activities are in full swing globally to translate the use of saliva as a non-invasive and highly potential specimen for clinical diagnostics, particularly for COVID-19 detection. Being comprised of a pool of biomarkers also enriched with ACE-2 receptors, saliva can provide vital information regarding the state of the human body. Advancements in biophotonics tools for saliva investigation may offer promise for developing rapid, highly objective, optical modalities for COVID- 19 detection. This article presents concept/design study, which propose the use of Raman/laser induced fluorescence spectroscopic device that have the potential for viral detection via saliva from a safer distance. Noticeable changes of biomarkers present in saliva in response to viral infection can reflect the pathological state, thus can altogether affect the Raman spectral pattern. Monitoring these spectral patterns of saliva, which are further enhanced by using cost effective and reproducible Surface Enhanced Raman Spectroscopy substrates can be a viable option for sensitive and non-invasive viral detection. The spectral information acquired from the optical device can be processed using various multivariate statistical analytical tools, which ultimately facilitate effective viral detection in few minutes. This method doesn't demand the necessity of qualified professionals and sample processing with reagents unlike in RT-PCR test. The proposed optical device can be further modified into a portable form, which can be easily transported for field applications. The stand-off observation, contactless and highly non-invasive technique can be of paramount importance in the current context, where the safer screening of a large population for viral infection by maintaining social distances is a necessity. The proposed stand-off spectroscopic technique can also address the major concern of nosocomial viral transmission amongst healthcare workers during sample collection in a pandemic scenario.

4.
Anal Chim Acta ; 1178: 338805, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34482864

RESUMEN

The development of real-time monitoring sensors for pyro-metallurgical processes is an analytical challenge, mainly due to adverse environmental conditions, high spectral interferences and multiphase (molten and gas) reactions. This work demonstrates the suitability of stand-off LIBS (ST-LIBS) for real time monitoring of the desulfurization of blister copper which is carried out in molten phase. Here sulfur is removed by the formation of SO2 by supplying oxygen in molten phase. Using ST-LIBS the relative emission intensities of Cu(I) at 351.06 nm, O at 777.34 nm and S at 921.29 nm in both molten and gaseous phase were considered simultaneously during the process. This was possible only by the use high energy laser pulse over up to 270 mJ per pulse. In the case of copper, the selection of emission lines was assessed considering non-linear behavior, which is caused by self-absorption. For the first time, real time determination of sulfur in ppm range is reported by ST-LIBS using low sensitive lines from the NIR region. These results were validated with differential optical absorption spectroscopy (DOAS) as gold standard method. The analytical information obtained by LIBS can precisely determine the critical end-point of the desulfurization where the removal of sulfur is finished, and copper started to oxidize.


Asunto(s)
Vesícula , Cobre , Humanos , Rayos Láser , Análisis Espectral , Azufre
5.
J Theor Biol ; 530: 110873, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34425133

RESUMEN

The war of attrition in game theory is a model of a stand-off situation between two opponents where the winner is determined by its persistence. We model a stand-off between a predator and a prey when the prey is hiding and the predator is waiting for the prey to come out from its refuge, or when the two are locked in a situation of mutual threat of injury or even death. The stand-off is resolved when the predator gives up or when the prey tries to escape. Instead of using the asymmetric war of attrition, we embed the stand-off as an integral part of the predator-prey model of Rosenzweig and MacArthur derived from first principles. We apply this model to study the coevolution of the giving-up rates of the prey and the predator, using the adaptive dynamics approach. We find that the long term evolutionary process leads to three qualitatively different scenarios: the predator gives up immediately, while the prey never gives up; the predator never gives up, while the prey adopts any giving-up rate greater than or equal to a given positive threshold value; the predator goes extinct. We observe that some results are the same as for the asymmetric war of attrition, but others are quite different.


Asunto(s)
Modelos Biológicos , Conducta Predatoria , Animales , Evolución Biológica , Cadena Alimentaria , Teoría del Juego , Humanos , Dinámica Poblacional
6.
Materials (Basel) ; 14(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064660

RESUMEN

Abrasive waterjet machining (AWJM) has a particularly high potential for the machining of stainless steels. One of the main optimization objectives of the machining of X2 CrNiMo 17-12-2 stainless steel is obtaining a minimal surface roughness. This entails selecting an optimum configuration of the main influencing factors of the machining process. Optimization of the machining system was achieved by intervening on four selected input quantities (traverse speed, waterjet pressure, stand-off distance, and grit size), with three set points considered for each. The effects of modifying the set-points of each input parameter on the surface roughness were studied. By means of response surface methodology (RSM) the combination of factor set points was determined that ensures a minimum roughness of the machined surface. The main benefit of RSM is the reduced time needed for experimenting.

7.
Materials (Basel) ; 13(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092862

RESUMEN

Zr-based amorphous alloy is a new type of metastable energetic material, which has been exploringly used to design shaped charge (SC) liners by scholars of the military industry. In order to know well how the stand-off distance influences jet penetration performance of liners made by such energetic materials against metal targets, SC static explosion tests were conducted under the same initiation and target conditions but different stand-off distances compared with copper liners. Test results indicate that the jet depth of penetration (DOP) of Zr-based amorphous alloy liners firstly increases slowly and then decreases sharply as the stand-off becomes larger. The optimum stand-off distance is 3.5 times of charge diameter (CD) and the corresponding maximum DOP is about 2.68 CD against the 45# steel plate. The perforation area varies with the stand-off distance. It reaches the maximum when the stand-off is 3.5 CD and the corresponding perforation diameter is about 42mm, also the penetration hole is nearly circular. The jet DOP of Zr-based amorphous alloy liner is smaller than that of copper liner's while the perforation area is the opposite. The former DOP is about 55.7% of the latter and the former perforation area is about 2.8 times of latter when the stand-off distance is 3.5 CD.

8.
J Ultrasound ; 23(1): 45-53, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30927249

RESUMEN

PURPOSE: Gel pad is an aqueous, flexible, easy available, disposable spacer used for the ultrasound (US) scan of superficial or difficult-to-visualize areas. In clinical practice, it is widely used in B-mode US approach of superficial lesions but, to date, no data have been provided as to its efficacy in the Doppler detection of superficial flows. The aim of our study was to demonstrate the role of stand-off gel pad in the detection of the otherwise-missed peri- or intra-lesional flow signals on Doppler imaging. MATERIALS AND METHODS: A total of 100 superficial lesions undergone to an US evaluation using a 7.5-12-MHz linear probe were evaluated prospectively with and without interposition of a gel stand-off pad to detect the presence or absence of vascularization and to classify the vascular pattern. RESULTS: Peri- or intra-lesional flow was demonstrated in 56% of cases without and in 84% of cases with interposition of a gel stand-off pad; moreover, a statistically significant difference (p value < 0.001) was observed at Chi-square test in the identification of the flow pattern between the use and no use of the pad. CONCLUSIONS: The use of a gel stand-off pad allows the detection of otherwise-missed peri- or intra-lesional flow signals on Doppler imaging, increasing the diagnostic role of this technique in differential diagnosis of superficial lesions.


Asunto(s)
Enfermedades de la Piel/diagnóstico por imagen , Piel/diagnóstico por imagen , Ultrasonografía Doppler en Color/instrumentación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Flujo Sanguíneo Regional , Piel/irrigación sanguínea , Piel/patología , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/diagnóstico por imagen , Ultrasonografía Doppler en Color/métodos , Adulto Joven
9.
J Appl Clin Med Phys ; 20(10): 142-151, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31605464

RESUMEN

Current practice when delivering dose for superficial skin radiotherapy is to adjust the monitor units so that the prescribed dose is delivered to the central axis of the superficial unit applicator. Variations of source-to-surface distance due to patient's anatomy protruding into the applicator or extending away from the applicator require adjustments to the monitor units using the inverse square law. Off-axis dose distribution varies significantly from the central axis dose and is not currently being quantified. The dose falloff at the periphery of the field is not symmetrical in the anode-cathode axis due to the heel effect. This study was conducted to quantify the variation of dose across the surface being treated and model a simple geometric shape to estimate a patient's surface with stand-in and stand-off. Isodose plots and color-coded dose distribution maps were produced from scans of GAFChromic EBT-3 film irradiated by a Gulmay D3300 orthovoltage x-ray therapy system. It was clear that larger applicators show a greater dose falloff toward the periphery than smaller applicators. Larger applicators were found to have a lower percentage of points above 90% of central axis dose (SA90). Current clinical practice does not take this field variation into account. Stand-in can result in significant dose falloff off-axis depending on the depth and width of the protrusion, while stand-off can result in a flatter field due to the high-dose region near the central axis being further from the source than the peripheral regions. The central axis also received a 7% increased or decreased dose for stand-in or stand-off, respectively.


Asunto(s)
Braquiterapia/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Neoplasias Cutáneas/radioterapia , Braquiterapia/normas , Humanos , Método de Montecarlo , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
10.
J Raman Spectrosc ; 50(7): 1034-1043, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31598032

RESUMEN

Stand-off Raman spectroscopy offers a highly selective technique to probe unknown substances from a safe distance. Often, it is necessary to scan large areas of interest. This can be done by pointwise imaging (PI), that is, spectra are sequentially acquired from an array of points over the region of interest (point-by-point mapping). Alternatively, in this paper a direct hyperspectral Raman imager is presented, where a defocused laser beam illuminates a wide area of the sample and the Raman scattered light is collected from the whole field of view (FOV) at once as a spectral snapshot filtered by a liquid crystal tunable filter to select a specific Raman shift. Both techniques are compared in terms of achievable FOV, spectral resolution, signal-to-noise performance, and time consumption during a measurement at stand-off distance of 15 m. The HSRI showed superior spectral resolution and signal-to-noise ratio, while more than doubling the FOV of the PI at laser power densities reduced by a factor of 277 at the target. Further, the output hyperspectral image data cube can be processed with state of the art chemometric algorithms like vertex component analysis in order to get a simple deterministic false color image showing the chemical composition of the target. This is shown for an artificial polymer sample, measured at a distance of 15 m.

11.
Sensors (Basel) ; 19(19)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581543

RESUMEN

Here, we describe an innovative Integrated Laser Sensor (ILS) that combines four spectroscopic techniques and two vision systems into a unique, transportable device. The instrument performs Raman and Laser-Induced Fluorescence (LIF) spectroscopy excited at 355 nm and Laser-Induced Breakdown Spectroscopy (LIBS) excited at 1064 nm, and it also detects Laser Scattering (LS) from the target under illumination at 650 nm. The combination of these techniques supplies information about: material change from one scanning point to another, the presence of surface contaminants, and the molecular and elemental composition of top target layers. Switching between the spectroscopic techniques and the laser wavelengths is fully automatic. The instrument is equipped with an autofocus, and it performs scanning with a chosen grid density over an interactively-selected target area. Alternative to the spectroscopic measurements, it is possible to switch the instrument to a high magnification target viewing. The working distances tested until now are between 8.5 and 30 m. The instrument is self-powered and remotely controlled via wireless communication. The ILS has been fully developed at ENEA for security applications, and it was successfully tested in two outdoor campaigns where an automatic recognition of areas containing explosives in traces had been implemented. The strategies for the identification of nitro-compounds placed on various substrates as fingerprints and the results obtained at a working distance of 10 m are discussed in the following.

12.
ACS Nano ; 13(10): 12090-12099, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31518107

RESUMEN

Stand-off Raman spectroscopy combines the advantages of both Raman spectroscopy and remote detection to retrieve molecular vibrational fingerprints of chemicals at inaccessible sites. However, it is currently restricted to the detection of pure solids and liquids and not widely applicable for dispersed molecules in air. Herein, we realize real-time stand-off SERS spectroscopy for remote and multiplex detection of atmospheric airborne species by integrating a long-range optic system with a 3D analyte-sorbing metal-organic framework (MOF)-integrated SERS platform. Formed via the self-assembly of Ag@MOF core-shell nanoparticles, our 3D plasmonic architecture exhibits micrometer thick SERS hotspot to allow active sorption and rapid detection of aerosols, gas, and volatile organic compounds down to parts-per-billion levels, notably at a distance up to 10 m apart. The platform is highly sensitive to changes in atmospheric content, as demonstrated in the temporal monitoring of gaseous CO2 in several cycles. Importantly, we demonstrate the remote and multiplex quantification of polycyclic aromatic hydrocarbon mixtures in real time under outdoor daylight. By overcoming core challenges in current remote Raman spectroscopy, our strategy creates an opportunity in the long-distance and sensitive monitoring of air/gaseous environment at the molecular level, which is especially important in environmental conservation, disaster prevention, and homeland defense.

13.
Int J Pharm ; 568: 118503, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31306711

RESUMEN

In this study, needle-free jet injection dynamics were studied using homogeneous gelatin as model substrates. Whilst keeping nozzle properties such as orifice diameter (do) and ampoule volume (V) constant, we demonstrate the effect of standoff (s), confinement around the gel, storage modulus (G') of model gel and liquid viscosity (µ) on the penetration depth of the jet injection. High-speed imaging was used to observe the liquid jet propagation and dispersion dynamics, whilst a load cell was implemented to measure the impact force for different standoff distance and viscosity of the liquid. The different parameters considered showed significant effects on penetration depth, with non-linear dependence on standoff being the key result, which may have implications for future injector designs. Moreover, the effect of confinement serves as a caution of using gelatin substrates as a proxy for human tissue.


Asunto(s)
Inyecciones a Chorro , Gelatina , Dureza , Polvos , Viscosidad
14.
Animals (Basel) ; 9(5)2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117240

RESUMEN

Bedding quality and cow lying time were measured during five weeks in a normal farm practice (NFP) off-paddock system with no bedding refreshment. Two groups of 100 non-lactating dairy cows were compared to groups of 8 cows with fresh bedding (FB). The cows were on a woodchip pad for 18 h/d at a space allowance of 5.4 m2/cow, with 6 h/d on pasture for 5 weeks. Lying times were recorded continuously for 60 cows per group using accelerometers. Bedding moisture content was measured weekly. Data for each NFP group were analysed and compared with those of their respective FB group using repeated measures. The lying time declined over five weeks from 11.6 h/day during the first week to 5.6 h/day during the fifth week (SED = 0.3; F1,25 = 351.56; p < 0.001). The moisture content of the bedding increased over the five weeks and was significantly higher for both NFP groups (NFP Group 1: F5,59 = 8.33; p < 0.001; NFP Group 2: F5,61 = 5.54; p < 0.001) than those of the respective FB groups. The percentage of total time lying when in the paddock increased for the NFP groups, reaching 15% in the last week of the trial. During five weeks on a stand-off pad, bedding quality deteriorated, and cows lay down less, to such an extent that welfare was compromised.

15.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901871

RESUMEN

Pipeline inspection gauges (PIGs) carry out automatic pipeline inspection with nondestructive testing (NDT) technologies like ultrasound, magnetic flux leakage, and eddy current. The ultrasonic straight beam allows technicians to determine the wall thickness of the pipeline through the time of flight diffraction (TOFD), providing the pipeline reconstruction and allowing the detection of several defects like dents or corrosion. If the pipeline is of a long distance, then the inspection process is automatic, and the fluid pressure pushes the PIG through the pipeline system. In this case, the PIG velocity and its axial alignment with the pipeline cannot be controlled. The PIG geometry, the pipeline deformations, and the girth welds cause a continuous chattering when the PIG is running, removing the transducers perpendicularity with the inspection points, which means that some echoes cannot be received. To reduce this problem, we propose a novel method to design a sensor carrier that takes into account the angularity and distance effects to acquire the straight beam echoes. The main advantage of our sensor carrier is that it can be used in concave and convex pipeline sections through geometric adjustments, which ensure that it is in contact with the inner pipe wall. Our improvement of the method is the characterization of the misalignment between the internal wall of the pipeline and the transducer. Later, we analyzed the conditions of the automatic pipeline inspection, the existing recommendations in state-of-the-art technology, and the different mechanical scenarios that may occur. For the mechanical design, we developed all the equations and rules. At the signal processing level, we set a fixed gain in the filtering step to obtain the echoes in a defined distance range without saturating the acquisition channels. For the validation, we compared through the mean squared error (MSE) our sensor carrier in a straight pipe section and a pipe elbow of steel versus other sensor carrier configurations. Finally, we present the design parameters for the development of the sensor carrier for different pipeline diameters.

16.
J Med Ultrasound ; 26(3): 147-152, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283201

RESUMEN

OBJECTIVE: The study's primary objective was to determine army medics' accuracy performing bedside ultrasound (US) to detect radiolucent foreign bodies (FBs) in a soft-tissue hand model. Secondary objectives included the assessment of US stand-off pad effects on soft-tissue FB detection rates and assess established FB detectable lower limit size of 2 mm. METHODS: Prospective, single blinded, observational study of US-naïve Army medics' abilities utilizing bedside US to detect wooden FBs in a chicken thigh model with or without an US stand-off pad. After a 2 h training period, medics' abilities to detect 1-3 mm FB utilizing a SonoSite® M-Turbo US and 13-6 MHz linear probe were assessed. RESULTS: After a 2 h training period, 28 medics had a sensitivity and specificity of 73% and 78% detecting 1-3 mm FBs utilizing standard US equipment. The medics' sensitivity and specificity were both 78% in detecting radiolucent FBs 2 mm and larger without a stand-off pad. The sensitivity and specificity decreased to 48%, 62%, and 67% when utilizing a stand-off pad to detect 1, 2, and 3 mm soft-tissue FBs. Sub 2 mm detection rates decreased from 82% for 2 mm FB to 64% for 1 mm FBs without utilizing a stand-off pad. CONCLUSION: Army medics with minimal US experience successfully identified FBs embedded in hand models with accuracies similar to radiologists and emergency medicine physicians. However, radiolucent FB detection sensitivity and specificity decreased in US-naïve Army medics utilizing stand-off pads. In addition, this study reconfirmed the lower limit of FB detection rates at 2 mm. These results support Army medics' utilization of US to evaluate for superficial radiolucent FBs of the hand.

17.
Sensors (Basel) ; 18(10)2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30248956

RESUMEN

Remote Raman spectroscopy is widely used to detect minerals, explosives and air pollution, for example. One of its main problems, however, is background radiation that is caused by ambient light and sample fluorescence. We present here, to the best of our knowledge, the first time a distance-resolving Raman radar device that is based on an adjustable, time-correlated complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode line sensor which can measure the location of the target sample simultaneously with the normal stand-off spectrometer operation and suppress the background radiation dramatically by means of sub-nanosecond time gating. A distance resolution of 3.75 cm could be verified simultaneously during normal spectrometer operation and Raman spectra of titanium dioxide were distinguished by this system at distances of 250 cm and 100 cm with illumination intensities of the background of 250 lux and 7600 lux, respectively. In addition, the major Raman peaks of olive oil, which has a fluorescence-to-Raman signal ratio of 33 and a fluorescence lifetime of 2.5 ns, were distinguished at a distance of 30 cm with a 250 lux background illumination intensity. We believe that this kind of time-correlated CMOS single-photon avalanche diode sensor could pave the way for new compact distance-resolving Raman radars for application where distance information within a range of several metres is needed at the same time as a Raman spectrum.

18.
Sensors (Basel) ; 18(5)2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29695094

RESUMEN

Early detection of humans under the influence of alcohol in public places (workplace, public gathering) is particularly important for safety reasons. In this article, the theoretical analysis of stand-off detection of alcohol in the air exhaled by humans as well as experimental results of the developed experimental setup is presented. The concept of differential absorption of two laser beams at different wavelengths was used. The idea of using standard deviation of the relative difference of the amplitudes of two signals to detect the alcohol was applied for the first time. The idea was verified by the experiments and it was shown that a reliable device can be developed that can efficiently detect alcohol concentration in the exhaled air at the level of 0.3 mg/L (0.63‰). Moreover, the concept of such device examining humans entering a specific area was proposed. The results of this article may be useful to scientists or engineers working on alcohol detection in human blood.


Asunto(s)
Espiración , Pruebas Respiratorias , Ambiente , Etanol , Gases , Humanos , Lugar de Trabajo
19.
Angew Chem Int Ed Engl ; 57(20): 5792-5796, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29569823

RESUMEN

Molecular-level airborne sensing is critical for early prevention of disasters, diseases, and terrorism. Currently, most 2D surface-enhanced Raman spectroscopy (SERS) substrates used for air sensing have only one functional surface and exhibit poor SERS-active depth. "Aerosolized plasmonic colloidosomes" (APCs) are introduced as airborne plasmonic hotspots for direct in-air SERS measurements. APCs function as a macroscale 3D and omnidirectional plasmonic cloud that receives laser irradiation and emits signals in all directions. Importantly, it brings about an effective plasmonic hotspot in a length scale of approximately 2.3 cm, which affords 100-fold higher tolerance to laser misalignment along the z-axis compared with 2D SERS substrates. APCs exhibit an extraordinary omnidirectional property and demonstrate consistent SERS performance that is independent of the laser and analyte introductory pathway. Furthermore, the first in-air SERS detection is demonstrated in stand-off conditions at a distance of 200 cm, highlighting the applicability of 3D omnidirectional plasmonic clouds for remote airborne sensing in threatening or inaccessible areas.

20.
Appl Spectrosc ; 71(7): 1494-1505, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28664781

RESUMEN

Broadband mid-infrared molecular spectroscopy is essential for detection and identification of many chemicals and materials. In this report, we present stand-off mid-infrared spectra of 1,3,5-trinitro-1,3,5-triazine or cyclotrimethylene trinitramine (RDX) residues on a stainless-steel surface measured by a broadband external cavity quantum cascade laser (QCL) system. The pulsed QCL is continuously scanned over 800 cm-1 in the molecular fingerprint region and the amplitude of the reflection signal is measured by either a boxcar-averager-based scheme or a lock-in-amplifier-based scheme with 1 MHz and 100 kHz quartz crystal oscillators. The main background noise is due to the laser source instability and is around 0.1% of normalized intensity. The direct absorption spectra have linewidth resolution around 0.1 cm-1 and peak height sensitivity around 10-2 due to baseline interference fringes. Stand-off detection of 5-50 µg/cm2 of RDX trace adsorbed on a stainless steel surface at the distance of 5 m is presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA