Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36366249

RESUMEN

Rapid advancements in the medical field have drawn much attention to automatic emotion classification from EEG data. People's emotional states are crucial factors in how they behave and interact physiologically. The diagnosis of patients' mental disorders is one potential medical use. When feeling well, people work and communicate more effectively. Negative emotions can be detrimental to both physical and mental health. Many earlier studies that investigated the use of the electroencephalogram (EEG) for emotion classification have focused on collecting data from the whole brain because of the rapidly developing science of machine learning. However, researchers cannot understand how various emotional states and EEG traits are related. This work seeks to classify EEG signals' positive, negative, and neutral emotional states by using a stacking-ensemble-based classification model that boosts accuracy to increase the efficacy of emotion classification using EEG. The selected features are used to train a model that was created using a random forest, light gradient boosting machine, and gradient-boosting-based stacking ensemble classifier (RLGB-SE), where the base classifiers random forest (RF), light gradient boosting machine (LightGBM), and gradient boosting classifier (GBC) were used at level 0. The meta classifier (RF) at level 1 is trained using the results from each base classifier to acquire the final predictions. The suggested ensemble model achieves a greater classification accuracy of 99.55%. Additionally, while comparing performance indices, the suggested technique outperforms as compared with the base classifiers. Comparing the proposed stacking strategy to state-of-the-art techniques, it can be seen that the performance for emotion categorization is promising.


Asunto(s)
Electroencefalografía , Emociones , Humanos , Electroencefalografía/métodos , Emociones/fisiología , Aprendizaje Automático , Encéfalo
2.
Sensors (Basel) ; 22(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36146299

RESUMEN

Wind turbines are widely used worldwide to generate clean, renewable energy. The biggest issue with a wind turbine is reducing failures and downtime, which lowers costs associated with operations and maintenance. Wind turbines' consistency and timely maintenance can enhance their performance and dependability. Still, the traditional routine configuration makes detecting faults of wind turbines difficult. Supervisory control and data acquisition (SCADA) produces reliable and affordable quality data for the health condition of wind turbine operations. For wind power to be sufficiently reliable, it is crucial to retrieve useful information from SCADA successfully. This article proposes a new AdaBoost, K-nearest neighbors, and logistic regression-based stacking ensemble (AKL-SE) classifier to classify the faults of the wind turbine condition monitoring system. A stacking ensemble classifier integrates different classification models to enhance the model's accuracy. We have used three classifiers, AdaBoost, K-nearest neighbors, and logistic regression, as base models to make output. The output of these three classifiers is used as input in the logistic regression classifier's meta-model. To improve the data validity, SCADA data are first preprocessed by cleaning and removing any abnormal data. Next, the Pearson correlation coefficient was used to choose the input variables. The Stacking Ensemble classifier was trained using these parameters. The analysis demonstrates that the suggested method successfully identifies faults in wind turbines when applied to local 3 MW wind turbines. The proposed approach shows the potential for effective wind energy use, which could encourage the use of clean energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA