Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JHEP Rep ; 4(1): 100389, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34877514

RESUMEN

BACKGROUND & AIMS: Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism caused by loss-of-function mutations in ATP7B, which encodes a copper-transporting protein. It is characterized by excessive copper deposition in tissues, predominantly in the liver and brain. We sought to investigate whether gene-corrected patient-specific induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps) could serve as an autologous cell source for cellular transplantation therapy in WD. METHODS: We first compared the in vitro phenotype and cellular function of ATP7B before and after gene correction using CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs) in iHeps (derived from patients with WD) which were homozygous for the ATP7B R778L mutation (ATP7BR778L/R778L). Next, we evaluated the in vivo therapeutic potential of cellular transplantation of WD gene-corrected iHeps in an immunodeficient WD mouse model (Atp7b -/- / Rag2 -/- / Il2rg -/- ; ARG). RESULTS: We successfully created iPSCs with heterozygous gene correction carrying 1 allele of the wild-type ATP7B gene (ATP7BWT/-) using CRISPR/Cas9 and ssODNs. Compared with ATP7BR778L/R778L iHeps, gene-corrected ATP7BWT/- iHeps restored i n vitro ATP7B subcellular localization, its subcellular trafficking in response to copper overload and its copper exportation function. Moreover, in vivo cellular transplantation of ATP7BWT/- iHeps into ARG mice via intra-splenic injection significantly attenuated the hepatic manifestations of WD. Liver function improved and liver fibrosis decreased due to reductions in hepatic copper accumulation and consequently copper-induced hepatocyte toxicity. CONCLUSIONS: Our findings demonstrate that gene-corrected patient-specific iPSC-derived iHeps can rescue the in vitro and in vivo disease phenotypes of WD. These proof-of-principle data suggest that iHeps derived from gene-corrected WD iPSCs have potential use as an autologous ex vivo cell source for in vivo therapy of WD as well as other inherited liver disorders. LAY SUMMARY: Gene correction restored ATP7B function in hepatocytes derived from induced pluripotent stem cells that originated from a patient with Wilson's disease. These gene-corrected hepatocytes are potential cell sources for autologous cell therapy in patients with Wilson's disease.

2.
Biochem Biophys Rep ; 17: 81-86, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30582011

RESUMEN

Alport syndrome (AS) is an inherited disorder characterized by glomerular basement membrane (GBM) abnormality and development of chronic kidney disease at an early age. The cause of AS is a genetic mutation in type IV collagen, and more than 80% of patients have X-linked AS (XLAS) with mutation in COL4A5. Although the causal gene has been identified, mechanisms of progression have not been elucidated, and no effective treatment has been developed. In this study, we generated a Col4a5 mutant mouse harboring a nonsense mutation (R471X) obtained from a patient with XLAS using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system. Col4a5 mRNA and protein expressions were not observed in the kidneys of hemizygous R471X male mice. R471X mice showed proteinuria and hematuria. Pathology revealed progression of glomerulosclerosis and interstitial fibrosis by age. Electron microscopy identified irregular thickening in GBM accompanied by irregular lamination. These observations were consistent with the clinical and pathological features of patients with AS and other established models. In addition, our mice models develop end-stage renal disease at the median age of 28 weeks, much later compared to previous models much more consistent with clinical course of human XLAS. Our models have advantages for future experiments in regard with treatment for human XLAS.

3.
JACC Basic Transl Sci ; 3(2): 313-326, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30062216

RESUMEN

Precision medicine strives to delineate disease using multiple data sources-from genomics to digital health metrics-in order to be more precise and accurate in our diagnoses, definitions, and treatments of disease subtypes. By defining disease at a deeper level, we can treat patients based on an understanding of the molecular underpinnings of their presentations, rather than grouping patients into broad categories with one-size-fits-all treatments. In this review, the authors examine how precision medicine, specifically that surrounding genetic testing and genetic therapeutics, has begun to make strides in both common and rare cardiovascular diseases in the clinic and the laboratory, and how these advances are beginning to enable us to more effectively define risk, diagnose disease, and deliver therapeutics for each individual patient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA