RESUMEN
Kir7.1 is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. In the present communication we report the presence of a novel splice variant of Kir7.1 in mouse tissues including kidney, lung, choroid plexus and retinal pigment epithelium (RPE). The variant named mKir7.1-SV2 lacks most of the C-terminus domain but is predicted to have the two transmembrane domains and permeation pathway unaffected. Similarly truncated predicted proteins, Kir7.1-R166X and Kir7.1-Q219X, would arise from mutations associated with Leber Congenital Amaurosis, a rare recessive hereditary retinal disease that results in vision loss at early age. We found that mKir7.1-SV2 and the pathological variants do not produce any channel activity when expressed alone in HEK-293â¯cells due to their scarce presence in the plasma membrane. Simultaneous expression with the full length Kir7.1 however leads to a reduction in activity of the wild-type channel that might be due to partial proteasome degradation of WT-mutant channel heteromers.
Asunto(s)
Amaurosis Congénita de Leber/genética , Mutación/genética , Especificidad de Órganos , Canales de Potasio de Rectificación Interna/genética , Empalme del ARN/genética , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Proteínas Mutantes/metabolismo , Especificidad de Órganos/efectos de los fármacos , Péptidos/genética , Potasio/metabolismo , Inhibidores de Proteasoma/farmacología , Empalme del ARN/efectos de los fármacosRESUMEN
Advanced prostate cancer is an androgen-dependent disease for which the initial treatment is an androgen deprivation maneuver. However, some primary resistances to hormonal treatment occur with increasing incidence throughout the evolution of the disease. The taxanes, docetaxel and cabazitaxel, exert their action at multiple levels at the tumor cell: besides inhibiting the mitosis and inducing the cell death, they induce the nuclear accumulation of FOXO1, a potent nuclear factor that acts against the activation of androgen receptor inhibiting the transcription of AR-V7 variant associated with the development of resistances to abiraterone and enzalutamide. Docetaxel, as first-line therapy, and cabazitaxel, as second-line therapy, have demonstrated to increase the survival in castration-resistant prostate cancer. The results from last studies either on high-risk localized disease or on androgen-sensitive tumors demonstrate the increasing role of taxanes at earlier states of prostate cancer.
Asunto(s)
Neoplasias de la Próstata/tratamiento farmacológico , Taxoides/uso terapéutico , Animales , Humanos , MasculinoRESUMEN
Androgen receptor (AR) signaling is a key pathway modulating prostate cancer (PCa) progression. Several steps in this pathway have been investigated in order to propose novel treatment strategies for advanced PCa. Total osteopontin (OPN) has been described as a biomarker for PCa, in addition to its role in activating the progression of this tumor. Based on the known effects of the OPNc splice variant on PCa progression, the present study investigated whether this isoform can also modulate AR signaling. In order to test this, an in vitro model was used in which LNCaP cells were cultured in the presence of conditioned medium (CM) secreted by PCa cells overexpressing OPNc (OPNc-CM). The activation of AR signaling was evaluated by measuring the expression levels of AR-responsive genes (ARGs) using quantitative polymerase chain reaction and specific oligonucleotides. The data demonstrated that all nine tested ARGs (Fgf8, TMPRSS2, Greb1, Cdk2, Ndrg1, Cdk1, Pmepa1, Psa and Ar) are significantly upregulated in response to OPNc-CM compared with LNCaP cells cultured in CM secreted by control cells transfected with empty expression vector. The specific involvement of OPNc was demonstrated by depleting OPNc from OPNc-CM using an anti-OPNc neutralizing antibody. In addition, by using a phosphoinositide 3-kinase (PI3K)-specific inhibitor and AR antagonists, such as flutamide and bicalutamide, it was also observed that upregulation of ARGs in response to OPNc-CM involves PI3K signaling and depends on the AR. In conclusion, these data indicated that OPNc is able to activate AR signaling through the PI3K pathway and the AR. These data further corroborate our previous data, revealing the OPNc splice variant to be a key molecule that is able to modulate key signaling pathways involved in PCa progression.
RESUMEN
CD9 is the best-studied member of the tetraspanin family of transmembrane proteins. It is involved in various fundamental cellular processes and its altered expression is a characteristic of malignant cells of different origins. Despite numerous investigations confirming its fundamental role, the heterogeneity of CD9 or other tetraspanin proteins was considered only to be caused by posttranslational modification, rather than alternative splicing. Here we describe the first identification of CD9 transcript variants expressed by cell lines derived from fetal rat brain cells. Variant mRNA-B lacks a potential translation initiation codon in the alternative exon 1 and seems to be characteristic of the tumorigenic BT cell lines. In contrast, variant mRNA-C can be translated from a functional initiation codon located in its extended exon 2, and substantial amounts of this form detected in various tissues suggest a contribution to CD9 functions. From the alternative sequence of variant C, a different membrane topology (5 transmembrane domains) and a deviating spectrum of functions can be expected.