Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Genetics ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39268895

RESUMEN

Multiple pathways are known to suppress the formation of gross chromosomal rearrangements (GCRs), which can cause human diseases including cancer. In contrast, much less is known about pathways that promote their formation. The spindle assembly checkpoint (SAC), which ensures the proper separation of chromosomes during mitosis, has been reported to promote GCR, possibly by delaying mitosis to allow GCR-inducing DNA repair to occur. Here we show that this conclusion is the result of an experimental artifact arising from the synthetic lethality caused by disruption of the SAC and loss of the CIN8 gene, which is often lost in the genetic assay used to select for GCRs. After correcting for this artifact, we find no role of the SAC in promoting GCR.

2.
Elife ; 122024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092485

RESUMEN

The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a 'timely two-ness' that allows cell division to occur in absence of a SAC-dependent mitotic delay.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma , Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Centrosoma/metabolismo , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/metabolismo , Huso Acromático/fisiología , División Celular , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Células HeLa
3.
Adv Sci (Weinh) ; : e2406009, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018254

RESUMEN

The spindle assembly checkpoint (SAC) ensures chromosome segregation fidelity by manipulating unattached kinetochore-dependent assembly of the mitotic checkpoint complex (MCC). The MCC binds to and inhibits the anaphase promoting complex/cyclosome (APC/C) to postpone mitotic exit. However, the mechanism by which unattached kinetochores mediate MCC formation is not yet fully understood. Here, it is shown that CCDC68 is an outer kinetochore protein that preferentially localizes to unattached kinetochores. Furthermore, CCDC68 interacts with the SAC factor CDC20 to inhibit its autoubiquitination and MCC disassembly. Therefore, CCDC68 restrains APC/C activation to ensure a robust SAC and allow sufficient time for chromosome alignment, thus ensuring chromosomal stability. Hence, the study reveals that CCDC68 is required for CDC20-dependent MCC stabilization to maintain mitotic checkpoint activation.

4.
Cell Div ; 19(1): 21, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886738

RESUMEN

This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.

5.
EMBO Rep ; 25(6): 2743-2772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806674

RESUMEN

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Proteína 11 Similar a Bcl2 , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2 , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Ratones , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Atrofia , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Mitosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Médula Ósea/patología , Médula Ósea/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor
6.
Curr Biol ; 34(11): 2294-2307.e4, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776906

RESUMEN

Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other's function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2's CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2's CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this "interaction hub" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular , Segregación Cromosómica , Cinetocoros , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
7.
Curr Biol ; 34(11): 2279-2293.e6, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776902

RESUMEN

Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear. The conserved kinase Mps1 initiates SAC signaling by localizing transiently to kinetochores in prometaphase and is released upon bi-orientation. Using biochemistry, structure predictions, and cellular assays, we shed light on this dynamic behavior in Saccharomyces cerevisiae. A conserved N-terminal segment of Mps1 binds the neck region of Ndc80:Nuf2, the main microtubule receptor of kinetochores. Mutational disruption of this interface, located at the backside of the paired CH domains and opposite the microtubule-binding site, prevents Mps1 localization, eliminates SAC signaling, and impairs growth. The same interface of Ndc80:Nuf2 binds the microtubule-associated Dam1 complex. We demonstrate that the error correction kinase Ipl1/Aurora B controls the competition between Dam1 and Mps1 for the same binding site. Thus, binding of the Dam1 complex to Ndc80:Nuf2 may release Mps1 from the kinetochore to promote anaphase onset.


Asunto(s)
Proteínas de Ciclo Celular , Cinetocoros , Microtúbulos , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cinetocoros/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares
8.
Curr Biol ; 34(11): 2308-2318.e6, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776904

RESUMEN

The Mps1 and Aurora B kinases regulate and monitor kinetochore attachment to spindle microtubules during cell division, ultimately ensuring accurate chromosome segregation. In yeast, the critical spindle attachment components are the Ndc80 and Dam1 complexes (Ndc80c and DASH/Dam1c, respectively). Ndc80c is a 600-Å-long heterotetramer that binds microtubules through a globular "head" at one end and centromere-proximal kinetochore components through a globular knob at the other end. Dam1c is a heterodecamer that forms a ring of 16-17 protomers around the shaft of the single kinetochore microtubule in point-centromere yeast. The ring coordinates the approximately eight Ndc80c rods per kinetochore. In published work, we showed that a site on the globular "head" of Ndc80c, including residues from both Ndc80 and Nuf2, binds a bipartite segment in the long C-terminal extension of Dam1. Results reported here show, both by in vitro binding experiments and by crystal structure determination, that the same site binds a conserved segment in the long N-terminal extension of Mps1. It also binds, less tightly, a conserved segment in the N-terminal extension of Ipl1 (yeast Aurora B). Together with results from experiments in yeast cells and from biochemical assays reported in two accompanying papers, the structures and graded affinities identify a communication hub for ensuring uniform bipolar attachment and for signaling anaphase onset.


Asunto(s)
Cinetocoros , Microtúbulos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinetocoros/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Microtúbulos/metabolismo , Fosforilación , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Nucleares
9.
Elife ; 122024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629825

RESUMEN

Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Centrómero/metabolismo , Cinetocoros/metabolismo , Meiosis , Plantas/genética , Respuesta al Choque Térmico , Segregación Cromosómica
10.
Front Cell Dev Biol ; 12: 1355979, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544818

RESUMEN

Control mechanisms of spindle assembly and chromosome segregation are vital for preventing aneuploidy during cell division. The mammalian germ cells and embryos are prone to chromosome segregation errors, and the resulting aneuploidy is a major cause of termination of development or severe developmental disorders. Here we focused on early mouse embryos, and using combination of methods involving microinjection, immunodetection and confocal live cell imaging, we concentrated on the Spindle Assembly Checkpoint (SAC) and Anaphase Promoting Complex/Cyclosome (APC/C). These are two important mechanisms cooperating during mitosis to ensure accurate chromosome segregation, and assessed their activity during the first two mitoses after fertilization. Our results showed, that in zygotes and 2-cell embryos, the SAC core protein Mad1 shows very low levels on kinetochores in comparison to oocytes and its interaction with chromosomes is restricted to a short time interval after nuclear membrane disassembly (NEBD). Exposure of 2-cell embryos to low levels of spindle poison does not prevent anaphase, despite the spindle damage induced by the drug. Lastly, the APC/C is activated coincidentally with NEBD before the spindle assembly completion. This early onset of APC/C activity, together with precocious relocalization of Mad1 from chromosomes, prevents proper surveillance of spindle assembly by SAC. The results contribute to the understanding of the origin of aneuploidy in early embryos.

11.
BMC Biol ; 22(1): 71, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38523261

RESUMEN

BACKGROUND: Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress. RESULTS: We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit. CONCLUSIONS: Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis , Huso Acromático/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(12): e2322677121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466841

RESUMEN

The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during cell division by monitoring kinetochore-microtubule attachment. Plants produce both sequence-conserved and diverged SAC components, and it has been largely unknown how SAC activation leads to the assembly of these proteins at unattached kinetochores to prevent cells from entering anaphase. In Arabidopsis thaliana, the noncanonical BUB3.3 protein was detected at kinetochores throughout mitosis, unlike MAD1 and the plant-specific BUB1/MAD3 family protein BMF3 that associated with unattached chromosomes only. When BUB3.3 was lost by a genetic mutation, mitotic cells often entered anaphase with misaligned chromosomes and presented lagging chromosomes after they were challenged by low doses of the microtubule depolymerizing agent oryzalin, resulting in the formation of micronuclei. Surprisingly, BUB3.3 was not required for the kinetochore localization of other SAC proteins or vice versa. Instead, BUB3.3 specifically bound to BMF3 through two internal repeat motifs that were not required for BMF3 kinetochore localization. This interaction enabled BMF3 to recruit CDC20, a downstream SAC target, to unattached kinetochores. Taken together, our findings demonstrate that plant SAC utilizes unconventional protein interactions for arresting mitosis, with BUB3.3 directing BMF3's role in CDC20 recruitment, rather than the recruitment of BUB1/MAD3 proteins observed in fungi and animals. This distinct mechanism highlights how plants adapted divergent versions of conserved cell cycle machinery to achieve specialized SAC control.


Asunto(s)
Arabidopsis , Cinetocoros , Animales , Cinetocoros/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Puntos de Control del Ciclo Celular , Huso Acromático/metabolismo
13.
Chromosoma ; 133(2): 149-168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456964

RESUMEN

In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.


Asunto(s)
Proteínas Cromosómicas no Histona , Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Espermatocitos , Animales , Masculino , Ratas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cinesinas/metabolismo , Cinesinas/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Espermatocitos/metabolismo , Espermatocitos/citología , Espermatogénesis , Huso Acromático/metabolismo , Testículo/metabolismo , Testículo/citología
14.
Biochem Pharmacol ; 223: 116140, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513740

RESUMEN

Cancer cells consume more glucose and usually overexpress glucose transporters which have become potential targets for the development of anticancer drugs. It has been demonstrated that selective SGLT2 inhibitors, such as canagliflozin and dapagliflozin, display anticancer activity. Here we demonstrated that canagliflozin and dapagliflozin synergistically enhanced the growth inhibitory effect of paclitaxel in cancer cells including ovarian cancer and oral squamous cell carcinoma cells. Canagliflozin also inhibited glucose uptake via GLUTs. The combination of paclitaxel and WZB117, a GLUT inhibitor, exhibited a strong synergy, supporting the notion that inhibition of GLUTs by canagliflozin may also account for the synergy between canagliflozin and paclitaxel. Mechanistic studies in ES-2 ovarian cancer cells revealed that canagliflozin potentiated paclitaxel-induced apoptosis and DNA damaging effect. Paclitaxel in the nanomolar range elevated abnormal mitotic cells as well as aneuploid cells, and canagliflozin further enhanced this effect. Furthermore, canagliflozin downregulated cyclin B1 and phospho-BUBR1 upon spindle assembly checkpoint (SAC) activation by paclitaxel, and may consequently impair SAC. Thus, paclitaxel disturbed microtubule dynamics and canagliflozin compromised SAC activity, together they may induce premature mitotic exit, accumulation of aneuploid cells with DNA damage, and ultimately apoptosis.


Asunto(s)
Compuestos de Bencidrilo , Carcinoma de Células Escamosas , Glucósidos , Neoplasias de la Boca , Neoplasias Ováricas , Femenino , Humanos , Paclitaxel/farmacología , Canagliflozina/farmacología , Mitosis , Apoptosis , Neoplasias Ováricas/genética , Glucosa/farmacología , Aneuploidia
15.
Prostate ; 84(6): 605-619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38375594

RESUMEN

BACKGROUND: Metastatic castration-resistant prostate cancer (CRPC), the most refractory prostate cancer, inevitably progresses and becomes unresponsive to hormone therapy, revealing a pressing unmet need for this disease. Novel agents targeting HDAC6 and microtubule dynamics can be a potential anti-CRPC strategy. METHODS: Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay and anchorage-dependent colony formation assay. Flow cytometric analysis of propidium iodide staining was used to determine cell-cycle progression. Cell-based tubulin polymerization assay and confocal immunofluorescence microscopic examination determine microtubule assembly/disassembly status. Protein expressions were determined using Western blot analysis. RESULTS: A total of 82 novel derivatives targeting HDAC6 were designed and synthesized, and Compound 25202 stood out, showing the highest efficacy in blocking HDAC6 (IC50, 3.5 nM in enzyme assay; IC50, 1.0 µM in antiproliferative assay in CRPC cells), superior to tubastatin A (IC50, 5.4 µM in antiproliferative assay). The selectivity and superiority of 25202 were validated by examining the acetylation of both α-tubulin and histone H3, detecting cell apoptosis and HDACs enzyme activity assessment. Notably, 25202 but not tubastatin A significantly decreased HDAC6 protein expression. 25202 prolonged mitotic arrest through the detection of cyclin B1 upregulation, Cdk1 activation, mitotic phosphoprotein levels, and Bcl-2 phosphorylation. Compound 25202 did not mimic docetaxel in inducing tubulin polymerization but disrupted microtubule organization. Compound 25202 also increased the phosphorylation of CDC20, BUB1, and BUBR1, indicating the activation of the spindle assembly checkpoint (SAC). Moreover, 25202 profoundly sensitized cisplatin-induced cell death through impairment of cisplatin-evoked DNA damage response and DNA repair in both ATR-Chk1 and ATM-Chk2 pathways. CONCLUSION: The data suggest that 25202 is a novel selective and potent HDAC6 inhibitor. Compound 25202 blocks HDAC6 activity and interferes microtubule dynamics, leading to SAC activation and mitotic arrest prolongation that eventually cause apoptosis of CRPC cells. Furthermore, 25202 sensitizes cisplatin-induced cell apoptosis through impeding DNA damage repair pathways.


Asunto(s)
Cisplatino , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Cisplatino/farmacología , Neoplasias de la Próstata Resistentes a la Castración/patología , Tubulina (Proteína)/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Microtúbulos/metabolismo , Microtúbulos/patología , Histona Desacetilasa 6/metabolismo
16.
Curr Biol ; 34(5): 1133-1141.e4, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38354735

RESUMEN

The outer corona plays an essential role at the onset of mitosis by expanding to maximize microtubule attachment to kinetochores.1,2 The low-density structure of the corona forms through the expansion of unattached kinetochores. It comprises the RZZ complex, the dynein adaptor Spindly, the plus-end directed microtubule motor centromere protein E (CENP-E), and the Mad1/Mad2 spindle-assembly checkpoint proteins.3,4,5,6,7,8,9,10 CENP-E specifically associates with unattached kinetochores to facilitate chromosome congression,11,12,13,14,15,16 interacting with BubR1 at the kinetochore through its C-terminal region (2091-2358).17,18,19,20,21 We recently showed that CENP-E recruitment to BubR1 at the kinetochores is both rapid and essential for correct chromosome alignment. However, CENP-E is also recruited to the outer corona by a second, slower pathway that is currently undefined.19 Here, we show that BubR1-independent localization of CENP-E is mediated by a conserved loop that is essential for outer-corona targeting. We provide a structural model of the entire CENP-E kinetochore-targeting domain combining X-ray crystallography and Alphafold2. We reveal that maximal recruitment of CENP-E to unattached kinetochores critically depends on BubR1 and the outer corona, including dynein. Ectopic expression of the CENP-E C-terminal domain recruits the RZZ complex, Mad1, and Spindly, and prevents kinetochore biorientation in cells. We propose that BubR1-recruited CENP-E, in addition to its essential role in chromosome alignment to the metaphase plate, contributes to the recruitment of outer corona proteins through interactions with the CENP-E corona-targeting domain to facilitate the rapid capture of microtubules for efficient chromosome alignment and mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Mad2/genética , Mitosis , Dineínas/metabolismo , Huso Acromático/metabolismo , Células HeLa
17.
J Cell Sci ; 137(6)2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372383

RESUMEN

Male meiotic division exhibits two consecutive chromosome separation events without apparent pausing. Several studies have shown that spermatocyte divisions are not stringently regulated as in mitotic cells. In this study, we investigated the role of the canonical spindle assembly (SAC) pathway in Caenorhabditis elegans spermatogenesis. We found the intensity of chromosome-associated outer kinetochore protein BUB-1 and SAC effector MDF-1 oscillates between the two divisions. However, the SAC target securin is degraded during the first division and remains undetectable for the second division. Inhibition of proteasome-dependent protein degradation did not affect the progression of the second division but stopped the first division at metaphase. Perturbation of spindle integrity did not affect the duration of meiosis II, and only slightly lengthened meiosis I. Our results demonstrate that male meiosis II is independent of SAC regulation, and male meiosis I exhibits only weak checkpoint response.


Asunto(s)
Caenorhabditis elegans , Huso Acromático , Animales , Masculino , Caenorhabditis elegans/metabolismo , Huso Acromático/metabolismo , Espermatocitos/metabolismo , Meiosis , Cinetocoros/metabolismo , Segregación Cromosómica , Espermatogénesis , Oocitos/metabolismo , Proteínas de Ciclo Celular/metabolismo
18.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396778

RESUMEN

Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.


Asunto(s)
Segregación Cromosómica , Desarrollo Embrionario , Animales , Femenino , Humanos , Desarrollo Embrionario/genética , Aneuploidia , Mamíferos/genética , Tamaño de la Célula , Cromosomas
19.
EMBO J ; 43(5): 666-694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279026

RESUMEN

The efficacy of current antimitotic cancer drugs is limited by toxicity in highly proliferative healthy tissues. A cancer-specific dependency on the microtubule motor protein KIF18A therefore makes it an attractive therapeutic target. Not all cancers require KIF18A, however, and the determinants underlying this distinction remain unclear. Here, we show that KIF18A inhibition drives a modest and widespread increase in spindle assembly checkpoint (SAC) signaling from kinetochores which can result in lethal mitotic delays. Whether cells arrest in mitosis depends on the robustness of the metaphase-to-anaphase transition, and cells predisposed with weak basal anaphase-promoting complex/cyclosome (APC/C) activity and/or persistent SAC signaling through metaphase are uniquely sensitive to KIF18A inhibition. KIF18A-dependent cancer cells exhibit hallmarks of this SAC:APC/C imbalance, including a long metaphase-to-anaphase transition, and slow mitosis overall. Together, our data reveal vulnerabilities in the cell division apparatus of cancer cells that can be exploited for therapeutic benefit.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Neoplasias , Humanos , Ciclosoma-Complejo Promotor de la Anafase/genética , Dineínas , Cinesinas/genética , Cinetocoros , Mitosis , Neoplasias/genética
20.
Genes Cells ; 29(1): 39-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37963657

RESUMEN

The c-Jun N-terminal kinase-associated leucine zipper protein (JLP), a scaffold protein of mitogen-activated protein kinase signaling pathways, is a multifunctional protein involved in a variety of cellular processes. It has been reported that JLP is overexpressed in various types of cancer and is expected to be a potential therapeutic target. However, whether and how JLP overexpression affects non-transformed cells remain unknown. Here, we aimed to investigate the effect of JLP overexpression on chromosomal stability in human non-transformed cells and the mechanisms involved. We found that aneuploidy was induced in JLP-overexpressed cells. Moreover, we established JLP-inducible cell lines and observed an increased frequency of chromosome missegregation, reduced time from nuclear envelope breakdown to anaphase onset, and decreased levels of the spindle assembly checkpoint (SAC) components at the prometaphase kinetochore in cells overexpressing the wild-type JLP. In contrast, we observed that a point mutant JLP lacking the ability to interact with dynein light intermediate chain 1 (DLIC1) failed to induce chromosomal instability. Our results suggest that overexpression of the wild-type JLP facilitates premature SAC silencing through interaction with DLIC1, leading to aneuploidy. This study provides a novel insight into the mechanism through which JLP overexpression is associated with cancer development and progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Leucina Zippers , Dineínas/genética , Dineínas/metabolismo , Neoplasias/metabolismo , Inestabilidad Cromosómica , Aneuploidia , Mitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA