Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 67(8): 788-793, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546231

RESUMEN

One-dimensional (1D) gapless hinge states are predicated in the three-dimensional (3D) higher-order topological insulators and topological semimetals, because of the higher-order bulk-boundary correspondence. Nevertheless, the topologically protected property of the hinge states is still not demonstrated so far, because it is not accessible by conventional methods, such as spectroscopy experiments and quantum oscillations. Here, we reveal the topological nature of hinge states in the higher-order topological semimetal Cd3As2 nanoplate through spin potentiometric measurements. The results of current induced spin polarization indicate that the spin-momentum locking of the higher-order hinge state is similar to that of the quantum spin Hall state, showing the helical characteristics. The spin-polarized hinge states are robust up to room temperature and can nonlocally diffuse a long distance larger than 5µm, further indicating their immunity protected by topology. Our work deepens the understanding of transport properties of the higher-order topological materials and should be valuable for future electronic and spintronic applications.

2.
Beilstein J Nanotechnol ; 12: 913-923, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497739

RESUMEN

Employment of the non-trivial proximity effect in superconductor/ferromagnet (S/F) heterostructures for the creation of novel superconducting devices requires accurate control of magnetic states in complex thin-film multilayers. In this work, we study experimentally in-plane transport properties of microstructured Nb/Co multilayers. We apply various transport characterization techniques, including magnetoresistance, Hall effect, and the first-order-reversal-curves (FORC) analysis. We demonstrate how FORC can be used for detailed in situ characterization of magnetic states. It reveals that upon reduction of the external field, the magnetization in ferromagnetic layers first rotates in a coherent scissor-like manner, then switches abruptly into the antiparallel state and after that splits into the polydomain state, which gradually turns into the opposite parallel state. The polydomain state is manifested by a profound enhancement of resistance caused by a flux-flow phenomenon, triggered by domain stray fields. The scissor state represents the noncollinear magnetic state in which the unconventional odd-frequency spin-triplet order parameter should appear. The non-hysteretic nature of this state allows for reversible tuning of the magnetic orientation. Thus, we identify the range of parameters and the procedure for in situ control of devices based on S/F heterostructures.

3.
Nano Lett ; 21(5): 2026-2032, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33606545

RESUMEN

Topological materials that possess spin-momentum locked surface states provide an ideal platform to manipulate the quantum spin states by electrical means. However, an antisymmetric magnetoresistance (MR) superimposed on the spin-polarized transport signals is usually observed in the spin potentiometric measurements of topological materials, rendering more power loss and reduced signal-to-noise ratio. Here we reveal the mechanism of surface-bulk interaction for the observed antisymmetric linear MR in the spin transport of Dirac semimetal Cd3As2 nanoplates. The antisymmetric linear MR can be eliminated through sample surface modifications. As a consequence, clean signals of charge current induced spin-polarized transport are observed, robust up to room temperature. The purification of spin signals can be attributed to the isolation of surface and bulk transport channels via forming a charge depletion layer with surface modifications. This surface engineering strategy should be valuable for high-performance spintronic devices on topological materials.

4.
J Phys Condens Matter ; 33(17)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472181

RESUMEN

Applying an electric field perpendicular to the axis of a silicene armchair nanotube allows us to numerically study the formation of eight topological edge states as silicene's intrinsic spin-orbit gap is closed by the sublattice-staggered electrostatic potential created by the electric field. Following their evolution with electric field, it is revealed that, at very small fields, these eight states are very broad, spin-locked, and sublattice constrained, inheriting their properties from the K and K' states in a silicene two-dimensional honeycomb lattice. Four of those states are centered at the very top of the nanotube and the other four states are centered at the very bottom. As the field increases, each state starts to become narrower and to spread its spectral weight to the other sublattice. With further increase of the field, each state starts to spatially split, while the sublattice spreading continues. Once the spectral weight of each state is distributed evenly among both sublattices, the state has also effectively split into two spatially disconnected parts, after which, further increasing of the field will spread apart the two halves, moving them to the lateral regions of the nanotube, at the same time that the state halves become narrower. This is consistent with the formation of topological edge states, which delimit four ribbon-like topologically different regions: top and bottom topologically trivial 'ribbons' (where the electric field has induced a topological phase transition) that are adjacent to two topologically nontrivial 'ribbons' located at opposing sides of the nanotube. We also briefly access the possibility of observing these edge states by calculating the electronic properties for an electric field configuration that can be more readily produced in the laboratory.

5.
Magn Reson Med ; 75(4): 1822-30, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25976973

RESUMEN

PURPOSE: Levitt and co-workers have described the M2S pulse sequence which transfers between longitudinal and singlet spin order. Building on this work, we describe the construction of a portable M2S pulse sequence generator to increase the relaxation time of polarized compounds. Additionally, we investigate the efficiency of spin order transfer under conditions where physical parameters of the system are not known precisely. THEORY AND METHODS: A portable M2S generator is built. Longitudinally polarized N2O is converted to the singlet state by both adiabatic transfer and by the M2S sequence. Density matrix simulations are used to model the effects of mismatched chemical shift, flip angle, and scalar couplings. RESULTS: Density matrix simulations suggest that to convert 95% of the longitudinal m = 1 triplet state population to the singlet order we must match the Larmor precession frequency to the excitation radiofrequency field by 10%, the scalar couplings must be determined to better than 0.6%, and the flip angle must be calibrated to better than 2%. CONCLUSION: The sequence is robust against many mismatched physical parameters of the species we are converting. Additionally, the instrument's portability allows for the conversion of hyperpolarized species near a polarizer. The lifetime is increased by ∼12-fold. This is highly advantageous in systems where the hyperpolarized media relax rapidly.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/instrumentación , Simulación por Computador , Modelos Teóricos , Óxido Nitroso/química
6.
Nano Lett ; 15(6): 3894-8, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25946374

RESUMEN

Generating highly spin-polarized currents at the nanoscale is essential for spin current manipulations and spintronic applications. We find indications for up to 100% spin-polarized currents across nickel oxide atomic junctions formed between two nickel electrodes. The degree of spin polarization is probed by analyzing the shot noise resulting from the discrete statistics of spin-polarized electron transport. We show that spin filtering can be significantly enhanced by local chemical modifications at the single-atom level. This approach paves the way for effective manipulations of spin transport at the fundamental limit of miniaturization.

7.
Nano Lett ; 15(5): 3552-6, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25871804

RESUMEN

Achieving highly spin-polarized electric currents in atomic-scale junctions is of great importance in the field of nanoelectronics and spintronics. Based on robust symmetry considerations, we propose a mechanism to block completely one of spin conduction channels for a broad class of atomic and molecular junctions bridging two ferromagnetic electrodes. This particular behavior is due to the wave function orthogonality between spin up s-like states in ferromagnetic electrode and available π channels in the junction. As a consequence, the system would ideally yield 100% spin-polarized current, with a junction acting thus as a "half-metallic" conductor. Using ab initio electron transport calculations, we demonstrate this principle on two examples: (i) a short carbon chain and (ii) a π-conjugated molecule (polythiophene) connected either to model semi-infinite Ni wires or to realistic Ni(111) electrodes. It is also predicted that such atomic-scale junctions should lead to very high (ideally, infinite) magneto-resistance ratios since the electric current gets fully blocked if two electrodes have antiparallel magnetic alignment.

8.
Sci Technol Adv Mater ; 9(1): 014105, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27877931

RESUMEN

Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1) and detector (F2) electrodes connected to a normal conductor (N) is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin-orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin-orbit coupling in nonmagnetic metals is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA