Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Protein Pept Sci ; 24(5): 365-379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37018532

RESUMEN

Ion channels play critical roles in generating and propagating action potentials and in neurotransmitter release at a subset of excitatory and inhibitory synapses. Dysfunction of these channels has been linked to various health conditions, such as neurodegenerative diseases and chronic pain. Neurodegeneration is one of the underlying causes of a range of neurological pathologies, such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, brain injury, and retinal ischemia. Pain is a symptom that can serve as an index of the severity and activity of a disease condition, a prognostic indicator, and a criterion of treatment efficacy. Neurological disorders and pain are conditions that undeniably impact a patient's survival, health, and quality of life, with possible financial consequences. Venoms are the best-known natural source of ion channel modulators. Venom peptides are increasingly recognized as potential therapeutic tools due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. These include peptides that potently and selectively modulate a range of targets, such as enzymes, receptors, and ion channels. Thus, components of spider venoms hold considerable capacity as drug candidates for alleviating or reducing neurodegeneration and pain. This review aims to summarize what is known about spider toxins acting upon ion channels, providing neuroprotective and analgesic effects.


Asunto(s)
Analgesia , Venenos de Araña , Arañas , Animales , Venenos de Araña/farmacología , Neuroprotección , Calidad de Vida , Canales Iónicos , Péptidos/farmacología , Péptidos/uso terapéutico , Dolor/tratamiento farmacológico
2.
Molecules ; 23(7)2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012962

RESUMEN

This review summarises the current knowledge of Gomesin (Gm), an 18-residue long, cationic anti-microbial peptide originally isolated from the haemocytes of the Brazilian tarantula Acanthoscurria gomesiana. The peptide shows potent cytotoxic activity against clinically relevant microbes including Gram-positive and Gram-negative bacteria, fungi, and parasites. In addition, Gm shows in-vitro and in-vivo anti-cancer activities against several human and murine cancers. The peptide exerts its cytotoxic activity by permeabilising cell membranes, but the underlying molecular mechanism of action is still unclear. Due to its potential as a therapeutic agent, the structure and membrane-binding properties, as well as the leakage and cytotoxic activities of Gm have been studied using a range of techniques. This review provides a summary of these studies, with a particular focus on biophysical characterisation studies of peptide variants that have attempted to establish a structure-activity relationship. Future studies are still needed to rationalise the binding affinity and cell-type-specific selectivity of Gm and its variants, while more pre-clinical studies are required to develop Gm into a therapeutically useful peptide.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Antineoplásicos , Proteínas de Artrópodos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Arañas/química , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Proteínas de Artrópodos/química , Proteínas de Artrópodos/uso terapéutico , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Humanos , Ratones , Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA