Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Neurosci Lett ; 841: 137959, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218293

RESUMEN

Understanding the sequence of cellular responses and their contributions to pathomorphogical changes in spinal white matter injuries is a prerequisite for developing efficient therapeutic strategies for spinal cord injury (SCI) as well as neurodegenerative and inflammatory diseases of the spinal cord such as amyotrophic lateral sclerosis and multiple sclerosis. We have developed several types of surgical procedures suitable for acute one-time and chronic recurrent in vivo multiphoton microscopy of spinal white matter [1]. Sophisticated surgical procedures were combined with transgenic mouse technology to image spinal tissue labeled with up to four fluorescent proteins (FPs) in axons, astrocytes, microglia, and blood vessels. To clearly separate the simultaneously excited FPs, spectral unmixing including iterative procedures was performed after imaging the diversely labeled spinal white matter with a custom-made 4-channel two-photon laser-scanning microscope. In our longitudinal multicellular studies of injured spinal white matter, we imaged axonal dynamics and invasion of microglia and astrocytes for a time course of over 200 days after SCI. Our methods offer ideal platforms for investigating acute and chronic cellular dynamics, cell-cell interactions, and metabolite fluctuations in health and disease as well as pharmacological manipulations in vivo.


Asunto(s)
Axones , Ratones Transgénicos , Traumatismos de la Médula Espinal , Sustancia Blanca , Animales , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/diagnóstico por imagen , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/diagnóstico por imagen , Axones/patología , Axones/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Médula Espinal/patología , Médula Espinal/metabolismo , Microglía/metabolismo , Microglía/patología , Astrocitos/metabolismo , Astrocitos/patología
2.
J Biophotonics ; : e202400154, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098050

RESUMEN

In this study, we introduced a novel dual-laser multi-color imaging system. Integrated with a multi-channel filter wheel, this system compared three spectral decontamination algorithms (nonnegative matrix factorization [NMF], RCAN, and PICASSO) showcasing its efficacy in achieving four-color imaging with only two laser sources. Combined with a reliable image reconstruction algorithm, the spatial resolution of four channels super-resolution four-color images reached 130, 125, 133, and 132 nm, respectively. Lipid droplets, mitochondria, lysosomes, and nuclei from the mouse hepatocytes (AML12), human neuroblastoma cells (SH-SY5Y), mouse hippocampal neuronal cells (HT-22), and immortalized murine bone marrow-derived macrophages were imaged. At the same time, the chromatin condensation, nuclear contraction, DNA fragmentation, apoptotic body formation, as well as the fusion of Mito and Lyso involved in mitochondrial autophagy were observed in HT-22 and SH-SY5Y cells suffering oxidative stress. Our multi-color SIM imaging system establishes a powerful platform for dynamic organelle studies and other high-resolution investigations in live cells.

3.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149334

RESUMEN

The accuracy in assigning fluorophore identity and abundance, termed spectral unmixing, in biological fluorescence microscopy images remains challenging due to the unavoidable and significant overlap in emission spectra among fluorophores. In conventional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. As a matter of fact, organic fluorophores have not only unique emission spectral signatures but also have unique and characteristic excitation spectra. In this paper, we propose a generalized multi-view machine learning approach, which makes use of both excitation and emission spectra to greatly improve the accuracy in differentiating multiple highly overlapping fluorophores in a single image. By recording emission spectra of the same field with multiple combinations of excitation wavelengths, we obtain data representing these different views of the underlying fluorophore distribution in the sample. We then propose a framework of multi-view machine learning methods, which allows us to flexibly incorporate noise information and abundance constraints, to extract the spectral signatures of fluorophores from their reference images and to efficiently recover their corresponding abundances in unknown mixed images. Numerical experiments on simulated image data demonstrate the method's efficacy in improving accuracy, allowing for the discrimination of 100 fluorophores with highly overlapping spectra. Furthermore, validation on images of mixtures of fluorescently labeled E. coli demonstrates the power of the proposed multi-view strategy in discriminating fluorophores with spectral overlap in real biological images.

4.
Cytometry A ; 105(8): 595-606, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38863410

RESUMEN

Autofluorescence is an intrinsic feature of cells, caused by the natural emission of light by photo-excitatory molecular content, which can complicate analysis of flow cytometry data. Different cell types have different autofluorescence spectra and, even within one cell type, heterogeneity of autofluorescence spectra can be present, for example, as a consequence of activation status or metabolic changes. By using full spectrum flow cytometry, the emission spectrum of a fluorochrome is captured by a set of photo detectors across a range of wavelengths, creating an unique signature for that fluorochrome. This signature is then used to identify, or unmix, that fluorochrome's unique spectrum from a multicolor sample containing different fluorescent molecules. Importantly, this means that this technology can also be used to identify intrinsic autofluorescence signal of an unstained sample, which can be used for unmixing purposes and to separate the autofluorescence signal from the fluorophore signals. However, this only works if the sample has a singular, relatively homogeneous and bright autofluorescence spectrum. To analyze samples with heterogeneous autofluorescence spectral profiles, we setup an unbiased workflow to more quickly identify differing autofluorescence spectra present in a sample to include as "autofluorescence signatures" during the unmixing of the full stained samples. First, clusters of cells with similar autofluorescence spectra are identified by unbiased dimensional reduction and clustering of unstained cells. Then, unique autofluorescence clusters are determined and are used to improve the unmixing accuracy of the full stained sample. Independent of the intensity of the autofluorescence and immunophenotyping of cell subsets, this unbiased method allows for the identification of most of the distinct autofluorescence spectra present in a sample, leading to less confounding autofluorescence spillover and spread into extrinsic phenotyping markers. Furthermore, this method is equally useful for spectral analysis of different biological samples, including tissue cell suspensions, peripheral blood mononuclear cells, and in vitro cultures of (primary) cells.


Asunto(s)
Citometría de Flujo , Citometría de Flujo/métodos , Humanos , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Fluorescencia
5.
Plant Cell Rep ; 43(7): 164, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852113

RESUMEN

KEY MESSAGE: Hyperspectral features enable accurate classification of soybean seeds using linear discriminant analysis and GWAS for novel seed trait genes. Evaluating crop seed traits such as size, shape, and color is crucial for assessing seed quality and improving agricultural productivity. The introduction of the SUnSet toolbox, which employs hyperspectral sensor-derived image analysis, addresses this necessity. In a validation test involving 420 seed accessions from the Korean Soybean Core Collections, the pixel purity index algorithm identified seed- specific hyperspectral endmembers to facilitate segmentation. Various metrics extracted from ventral and lateral side images facilitated the categorization of seeds into three size groups and four shape groups. Additionally, quantitative RGB triplets representing seven seed coat colors, averaged reflectance spectra, and pigment indices were acquired. Machine learning models, trained on a dataset comprising 420 accession seeds and 199 predictors encompassing seed size, shape, and reflectance spectra, achieved accuracy rates of 95.8% for linear discriminant analysis model. Furthermore, a genome-wide association study utilizing hyperspectral features uncovered associations between seed traits and genes governing seed pigmentation and shapes. This comprehensive approach underscores the effectiveness of SUnSet in advancing precision agriculture through meticulous seed trait analysis.


Asunto(s)
Glycine max , Fenotipo , Semillas , Glycine max/genética , Semillas/genética , Semillas/anatomía & histología , Estudio de Asociación del Genoma Completo/métodos , Imágenes Hiperespectrales/métodos , Pigmentación/genética , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Aprendizaje Automático
6.
Methods Cell Biol ; 186: 311-332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705605

RESUMEN

Spectral flow cytometry has emerged as a significant player in the cytometry marketplace, with the potential for rapid growth. Despite a slow start, the technology has made significant strides in advancing various areas of single-cell analysis utilized by the scientific community. The integration of spectral cytometry into clinical laboratories and diagnostic processes is currently underway and is expected to garner a significant level of widespread acceptance in the near future. However, incorporating a new methodological approach into existing research programs can lead to misunderstandings or even misuse. This chapter offers an introductory yet comprehensive explanation of the scientific principles that form the foundation of spectral cytometry. Specifically, it delves into the unmixing processes that are utilized for data analysis. This overview is designed for those who are new to the field and seeking an informative guide to this exciting emerging technology.


Asunto(s)
Citometría de Flujo , Análisis de la Célula Individual , Citometría de Flujo/métodos , Humanos , Análisis de la Célula Individual/métodos , Animales
7.
J Biomed Opt ; 29(9): 093503, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38715717

RESUMEN

Significance: Hyperspectral dark-field microscopy (HSDFM) and data cube analysis algorithms demonstrate successful detection and classification of various tissue types, including carcinoma regions in human post-lumpectomy breast tissues excised during breast-conserving surgeries. Aim: We expand the application of HSDFM to the classification of tissue types and tumor subtypes in pre-histopathology human breast lumpectomy samples. Approach: Breast tissues excised during breast-conserving surgeries were imaged by the HSDFM and analyzed. The performance of the HSDFM is evaluated by comparing the backscattering intensity spectra of polystyrene microbead solutions with the Monte Carlo simulation of the experimental data. For classification algorithms, two analysis approaches, a supervised technique based on the spectral angle mapper (SAM) algorithm and an unsupervised technique based on the K-means algorithm are applied to classify various tissue types including carcinoma subtypes. In the supervised technique, the SAM algorithm with manually extracted endmembers guided by H&E annotations is used as reference spectra, allowing for segmentation maps with classified tissue types including carcinoma subtypes. Results: The manually extracted endmembers of known tissue types and their corresponding threshold spectral correlation angles for classification make a good reference library that validates endmembers computed by the unsupervised K-means algorithm. The unsupervised K-means algorithm, with no a priori information, produces abundance maps with dominant endmembers of various tissue types, including carcinoma subtypes of invasive ductal carcinoma and invasive mucinous carcinoma. The two carcinomas' unique endmembers produced by the two methods agree with each other within <2% residual error margin. Conclusions: Our report demonstrates a robust procedure for the validation of an unsupervised algorithm with the essential set of parameters based on the ground truth, histopathological information. We have demonstrated that a trained library of the histopathology-guided endmembers and associated threshold spectral correlation angles computed against well-defined reference data cubes serve such parameters. Two classification algorithms, supervised and unsupervised algorithms, are employed to identify regions with carcinoma subtypes of invasive ductal carcinoma and invasive mucinous carcinoma present in the tissues. The two carcinomas' unique endmembers used by the two methods agree to <2% residual error margin. This library of high quality and collected under an environment with no ambient background may be instrumental to develop or validate more advanced unsupervised data cube analysis algorithms, such as effective neural networks for efficient subtype classification.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Mastectomía Segmentaria , Microscopía , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Femenino , Mastectomía Segmentaria/métodos , Microscopía/métodos , Mama/diagnóstico por imagen , Mama/patología , Mama/cirugía , Imágenes Hiperespectrales/métodos , Márgenes de Escisión , Método de Montecarlo , Procesamiento de Imagen Asistido por Computador/métodos
8.
Methods Mol Biol ; 2784: 101-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502481

RESUMEN

Plant small RNAs are 21-24 nucleotide, noncoding RNAs that function as regulators in plant growth and development. Colorimetric detection of plant small RNAs was made possible with the introduction of locked nucleic acid probes. However, fluorescent detection of plant small RNAs has been challenging due to the high autofluorescence from plant tissue. Here we report a fluorescent in situ detection method for plant small RNAs. This method can be applied to most plant samples and tissue types and also can be adapted for single-molecule detection of small RNAs with super-resolution microscopy.


Asunto(s)
Sondas de Ácido Nucleico , ARN no Traducido , Hibridación Fluorescente in Situ/métodos , ARN de Planta/genética , Colorantes , Plantas/genética
9.
J Biomed Opt ; 29(Suppl 1): S11506, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38125716

RESUMEN

Significance: Photoacoustic imaging (PAI) provides contrast based on the concentration of optical absorbers in tissue, enabling the assessment of functional physiological parameters such as blood oxygen saturation (sO2). Recent evidence suggests that variation in melanin levels in the epidermis leads to measurement biases in optical technologies, which could potentially limit the application of these biomarkers in diverse populations. Aim: To examine the effects of skin melanin pigmentation on PAI and oximetry. Approach: We evaluated the effects of skin tone in PAI using a computational skin model, two-layer melanin-containing tissue-mimicking phantoms, and mice of a consistent genetic background with varying pigmentations. The computational skin model was validated by simulating the diffuse reflectance spectrum using the adding-doubling method, allowing us to assign our simulation parameters to approximate Fitzpatrick skin types. Monte Carlo simulations and acoustic simulations were run to obtain idealized photoacoustic images of our skin model. Photoacoustic images of the phantoms and mice were acquired using a commercial instrument. Reconstructed images were processed with linear spectral unmixing to estimate blood oxygenation. Linear unmixing results were compared with a learned unmixing approach based on gradient-boosted regression. Results: Our computational skin model was consistent with representative literature for in vivo skin reflectance measurements. We observed consistent spectral coloring effects across all model systems, with an overestimation of sO2 and more image artifacts observed with increasing melanin concentration. The learned unmixing approach reduced the measurement bias, but predictions made at lower blood sO2 still suffered from a skin tone-dependent effect. Conclusion: PAI demonstrates measurement bias, including an overestimation of blood sO2, in higher Fitzpatrick skin types. Future research should aim to characterize this effect in humans to ensure equitable application of the technology.


Asunto(s)
Técnicas Fotoacústicas , Pigmentación de la Piel , Humanos , Animales , Ratones , Oxígeno , Melaninas , Técnicas Fotoacústicas/métodos , Oximetría/métodos , Fantasmas de Imagen
10.
Data Brief ; 50: 109510, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663764

RESUMEN

Maintaining rich biodiversity and being a habitat and resource for humans, tropical forests are one of the most important global biomes. These forest ecosystems have been experiencing a host of unregulated anthropogenic activities including illegal tourism, and shifting cultivation. The presence of human-habitats in the restricted zones of forest ecosystems is a direct indicator of the human activities that may accelerate deterioration of forest quality by area and tree species composition. Remote sensing data have been extensively used for mapping forest types, and biophysical characterization at various spatial scales. Several remote sensing datasets from multispectral, hyperspectral and LIDAR sensors are available for developing and validating a host of methodologies for remote sensing application in forestry. However, quantifying the quality of forest stands and detecting potential threats from the sporadic and small-scale human activities requires sub-pixel level remote sensing data analysis methods such as, spectral mixture modelling. Generally, most of the studies employ pixel-level supervised learning-based analysis techniques to detect infrastructure and settlements. However, if the settlements are smaller than the ground sampling distance and are under the canopy, pixel-based techniques are not suitable. Reinvigorated with progressive availability of hyperspectral imagery, spectral mixture modelling based sub-pixel image analysis is gaining prominence in the contemporary remote sensing application development. However, there is a paucity of high-resolution hyperspectral imagery and associated ground truth spectral measurements for assessing various methodological approaches on studies related to anthropogenic activities and forest disturbance. Most of the studies have relied upon simulating and synthesising the hyperspectral imagery and its associated ground truth spectra for implementation of methods and algorithms. This article presents a distinct dataset of high-resolution hyperspectral imagery and associated ground truth spectra of various vegetable crops acquired over a tropical forest ecosystem. The dataset is valuable for research on developing new discrimination models of forest and cultivated vegetation, classification methods, spectral matching analysis techniques, and sub-pixel target detection methods.

11.
Appl Radiat Isot ; 201: 111011, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717416

RESUMEN

We introduced in a previous paper a time-dependent full-spectrum analysis algorithm speeding up the estimation of the activity of the radionuclides present in a sample. In this paper, we present a new version of the algorithm allowing online estimation. It uses only on a buffer of few segments while keeping the time information by using a time dependent regularization, thus reducing the size of the data matrices and the length of the processing of each iteration. The algorithm is optimized and tested on both simulated and measured spectra of aerosol samples.

12.
Sensors (Basel) ; 23(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37571629

RESUMEN

Hyperspectral data analysis is being utilized as an effective and compelling tool for image processing, providing unprecedented levels of information and insights for various applications. In this manuscript, we have compiled and presented a comprehensive overview of recent advances in hyperspectral data analysis that can provide assistance for the development of customized techniques for hyperspectral document images. We review the fundamental concepts of hyperspectral imaging, discuss various techniques for data acquisition, and examine state-of-the-art approaches to the preprocessing, feature extraction, and classification of hyperspectral data by taking into consideration the complexities of document images. We also explore the possibility of utilizing hyperspectral imaging for addressing critical challenges in document analysis, including document forgery, ink age estimation, and text extraction from degraded or damaged documents. Finally, we discuss the current limitations of hyperspectral imaging and identify future research directions in this rapidly evolving field. Our review provides a valuable resource for researchers and practitioners working on document image processing and highlights the potential of hyperspectral imaging for addressing complex challenges in this domain.

13.
ACS Appl Mater Interfaces ; 15(31): 37130-37142, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525365

RESUMEN

Exosomes (exos) widely existing in body fluids show great potential for noninvasive cancer diagnosis. Quantitative analysis of exos is traditionally performed by targeting specific exosomal surface proteins, but it is often imprecise due to the common expression of exosomal proteins and subtle expression differences between different cancer subtypes. Herein, we report quantitative surface-enhanced Raman spectroscopy (SERS) of serum exos through a combination of a paper-based lateral flow strip (LFS) biosensor with multivariate spectral unmixing analysis rather than simply quantifying exosomal proteins. Our SERS-LFS biosensor enables absolute quantification of two different serum exos with a limit of detection down to ∼106 particles/mL for both exos. We further exemplify the application of this strategy in quantitative dual-plex detection of serum exos from breast cancer patients. We find that human epidermal growth factor receptor 2+ (HER2+) and luminal A breast cancer patients undergoing no surgery are enriched in serum exos derived from SKBR-3 cells and MCF-7 cells (denoted as SKBR and MCF exos), respectively. The surgical treatment of these breast cancer patients accompanies an obvious decrease of either SKBR or MCF exos in the serum. These results suggest the great potential of the combination of the SERS-LFS biosensor and multivariate spectral unmixing for breast cancer subtyping and therapeutic surveillance with the powerful quantitative capability of exos in clinical samples.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Exosomas , Humanos , Femenino , Exosomas/química , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Espectrometría Raman/métodos , Suero , Técnicas Biosensibles/métodos
14.
J Environ Manage ; 342: 118283, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290307

RESUMEN

Quantitative prediction by unmanned aerial vehicle (UAV) remote sensing on water quality parameters (WQPs) including phosphorus, nitrogen, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and chlorophyll a (Chl-a), total suspended solids (TSS), and turbidity provides a flexible and effective approach to monitor the variation in water quality. In this study, a deep learning-based method integrating graph convolution network (GCN), gravity model variant, and dual feedback machine involving parametric probability analysis and spatial distribution pattern analysis, named Graph Convolution Network with Superposition of Multi-point Effect (SMPE-GCN) has been developed to calculate concentrations of WQPs through UAV hyperspectral reflectance data on large scale efficiently. With an end-to-end structure, our proposed method has been applied to assisting environmental protection department to trace potential pollution sources in real time. The proposed method is trained on a real-world dataset and its effectiveness is validated on an equal amount of testing dataset with respect to three evaluation metrics including root of mean squared error (RMSE), mean absolute percent error (MAPE), and coefficient of determination (R2). The experimental results demonstrate that our proposed model achieves better performance in comparison with state-of-the-art baseline models in terms of RMSE, MAPE, and R2. The proposed method is applicable for quantifying seven various WQPs and has achieved good performance for each WQP. The resulting MAPE ranges from 7.16% to 10.96% and R2 ranges from 0.80 to 0.94 for all WQPs. This approach brings a novel and systematic insight into real-time quantitative water quality monitoring of urban rivers, and provides a unified framework for in-situ data acquisition, feature engineering, data conversion, and data modeling for further research. It provides fundamental support to assist environmental managers to efficiently monitor water quality of urban rivers.


Asunto(s)
Ríos , Calidad del Agua , Clorofila A , Análisis de la Demanda Biológica de Oxígeno , Tecnología de Sensores Remotos , Monitoreo del Ambiente/métodos
15.
Microvasc Res ; 150: 104573, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37390964

RESUMEN

BACKGROUND: Optical spectroscopy is commonly used clinically to monitor oxygen saturation in tissue. The most commonly employed technique is pulse oximetry, which provides a point measurement of the arterial oxygen saturation and is commonly used for monitoring systemic hemodynamics, e.g. during anesthesia. Hyperspectral imaging (HSI) is an emerging technology that enables spatially resolved mapping of oxygen saturation in tissue (sO2), but needs to be further developed before implemented in clinical practice. The aim of this study is to demonstrate the applicability of HSI for mapping the sO2 in reconstructive surgery and demonstrate how spectral analysis can be used to obtain clinically relevant sO2 values. METHODS: Spatial scanning HSI was performed on cutaneous forehead flaps, raised as part of a direct brow lift, in eight patients. Pixel-by-pixel spectral analysis, accounting for the absorption from multiple chromophores, was performed and compared to previous analysis techniques to assess sO2. RESULTS: Spectral unmixing using a broad spectral range, and accounting for the absorption of melanin, fat, collagen, and water, provided a more clinically relevant estimate of sO2 than conventional techniques, where typically only spectral features associated with absorption of oxygenated (HbO2) and deoxygenated (HbR) hemoglobin are considered. We demonstrate its clinical applicability by generating sO2 maps of partially excised forehead flaps showed a gradual decrease in sO2 along the length of the flap from 95 % at the flap base to 85 % at the flap tip. After being fully excised, sO2 in the entire flap decreased to 50 % within a few minutes. CONCLUSIONS: The results demonstrate the capability of sO2 mapping in reconstructive surgery in patients using HSI. Spectral unmixing, accounting for multiple chromophores, provides sO2 values that are in accordance with physiological expectations in patients with normal functioning microvascularization. Our results suggest that HSI methods that yield reliable spectra are to be preferred, so that the analysis can produce results that are of clinical relevance.


Asunto(s)
Imágenes Hiperespectrales , Cirugía Plástica , Humanos , Oxígeno , Frente/cirugía , Saturación de Oxígeno
16.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298718

RESUMEN

Osteomyelitis is an infection of the bone that is often difficult to treat and causes a significant healthcare burden. Staphylococcus aureus is the most common pathogen causing osteomyelitis. Osteomyelitis mouse models have been established to gain further insights into the pathogenesis and host response. Here, we use an established S. aureus hematogenous osteomyelitis mouse model to investigate morphological tissue changes and bacterial localization in chronic osteomyelitis with a focus on the pelvis. X-ray imaging was performed to follow the disease progression. Six weeks post infection, when osteomyelitis had manifested itself with a macroscopically visible bone deformation in the pelvis, we used two orthogonal methods, namely fluorescence imaging and label-free Raman spectroscopy, to characterise tissue changes on a microscopic scale and to localise bacteria in different tissue regions. Hematoxylin and eosin as well as Gram staining were performed as a reference method. We could detect all signs of a chronically florid tissue infection with osseous and soft tissue changes as well as with different inflammatory infiltrate patterns. Large lesions dominated in the investigated tissue samples. Bacteria were found to form abscesses and were distributed in high numbers in the lesion, where they could occasionally also be detected intracellularly. In addition, bacteria were found in lower numbers in surrounding muscle tissue and even in lower numbers in trabecular bone tissue. The Raman spectroscopic imaging revealed a metabolic state of the bacteria with reduced activity in agreement with small cell variants found in other studies. In conclusion, we present novel optical methods to characterise bone infections, including inflammatory host tissue reactions and bacterial adaptation.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus/fisiología , Osteomielitis/patología , Modelos Animales de Enfermedad , Inflamación , Infecciones Estafilocócicas/microbiología , Infección Persistente
17.
Z Med Phys ; 33(3): 444-451, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37225605

RESUMEN

PURPOSE: Photoacoustic tomography (PAT) is a non-invasive and high-resolution imaging technique that can provide functional and molecular information from the optical properties of pathological tissues, such as cancer. Spectroscopic PAT (sPAT) is capable of supplying information such as oxygen saturation (sO2), which is an important biological indicator for diseases such as cancer. However, the wavelength dependent nature of sPAT makes it challenging to provide accurate quantitative measurements of tissue oxygenation beyond shallow depths. We have previously reported the utility of combined ultrasound tomography and PAT to achieve optical and acoustic compensated PAT images at a single wavelength and for enhanced PAT images at larger depths. In this work we further explore the utility of the optical and acoustic compensation PAT algorithm to minimize the wavelength dependency in sPAT by showcasing improvements in spectral unmixing. MATERIALS AND METHODS: Two optically and acoustically characterized heterogenous phantoms were manufactured to test the ability of the system and developed algorithm to minimize the wavelength-dependence driven error in sPAT spectral unmixing. The PA inclusions within each phantom were composed of a mixture of two sulfate dyes, copper sulfate (CuSO4) and nickel sulfate (NiSO4), with known optical spectra. Improvements between uncompensated and optically and acoustically compensated PAT (OAcPAT) were quantified as the relative percent error between the measured results and the ground truth. RESULTS: The results of our phantom studies demonstrate that OAcPAT can significantly improve the accuracy of sPAT measurements in a heterogenous medium and especially at larger inclusions depths which can reach to up to 12% improvement in measurement errors. This significant improvement can play a vital role in reliability of future in-vivo biomarker quantifications. CONCLUSIONS: Utilizing UST for model-based optical and acoustic compensation of PAT images was proposed by our group previously. In this work, we further demonstrated the efficacy of the developed algorithm in sPAT by minimizing the error caused by the tissue's optical heterogeneity on improving spectral unmixing, which is a major limiting factor in reliability of sPAT measurements. Such synergistic combination of UST and PAT provides a window of opportunity to achieve bias-free quantitative sPAT measurements, which plays an important role in future pre-clinical and clinical utility of PAT.


Asunto(s)
Técnicas Fotoacústicas , Reproducibilidad de los Resultados , Técnicas Fotoacústicas/métodos , Tomografía Computarizada por Rayos X , Fantasmas de Imagen , Algoritmos , Tomografía
18.
Glob Chang Biol ; 29(16): 4620-4637, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37254258

RESUMEN

Grassland ecosystems cover up to 40% of the global land area and provide many ecosystem services directly supporting the livelihoods of over 1 billion people. Monitoring long-term changes in grasslands is crucial for food security, biodiversity conservation, achieving Land Degradation Neutrality goals, and modeling the global carbon budget. Although long-term grassland monitoring using remote sensing is extensive, it is typically based on a single vegetation index and does not account for temporal and spatial autocorrelation, which means that some trends are falsely identified while others are missed. Our goal was to analyze trends in grasslands in Eurasia, the largest continuous grassland ecosystems on Earth. To do so, we calculated Cumulative Endmember Fractions (annual sums of monthly ground cover fractions) derived from MODIS 2002-2020 time series, and applied a new statistical approach PARTS that explicitly accounts for temporal and spatial autocorrelation in trends. We examined trends in green vegetation, non-photosynthetic vegetation, and soil ground cover fractions considering their independent change trajectories and relations among fractions over time. We derived temporally uncorrelated pixel-based trend maps and statistically tested whether observed trends could be explained by elevation, land cover, SPEI3, climate, country, and their combinations, all while accounting for spatial autocorrelation. We found no statistical evidence for a decrease in vegetation cover in grasslands in Eurasia. Instead, there was a significant map-level increase in non-photosynthetic vegetation across the region and local increases in green vegetation with a concomitant decrease in soil fraction. Independent environmental variables affected trends significantly, but effects varied by region. Overall, our analyses show in a statistically robust manner that Eurasian grasslands have changed considerably over the past two decades. Our approach enhances remote sensing-based monitoring of trends in grasslands so that underlying processes can be discerned.


Asunto(s)
Ecosistema , Pradera , Humanos , Clima , Biodiversidad , Suelo
19.
Adv Sci (Weinh) ; 10(19): e2301322, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092572

RESUMEN

Various morphological and functional parameters of peripheral nerves and their vascular supply are indicative of pathological changes due to injury or disease. Based on recent improvements in optoacoustic image quality, the ability of multispectral optoacoustic tomography, to investigate the vascular environment and morphology of peripheral nerves is explored in vivo in a pilot study on healthy volunteers in tandem with ultrasound imaging (OPUS). The unique ability of optoacoustic imaging to visualize the vasa nervorum by observing intraneural vessels in healthy nerves is showcased in vivo for the first time. In addition, it is demonstrated that the label-free spectral optoacoustic contrast of the perfused connective tissue of peripheral nerves can be linked to the endogenous contrast of hemoglobin and collagen. Metrics are introduced to analyze the composition of tissue based on its optoacoustic contrast and show that the high-resolution spectral contrast reveals specific differences between nervous tissue and reference tissue in the nerve's surrounding. How this showcased extraction of peripheral nerve characteristics using multispectral optoacoustic and ultrasound imaging could offer new insights into the pathophysiology of nerve damage and neuropathies, for example, in the context of diabetes is discussed.


Asunto(s)
Técnicas Fotoacústicas , Humanos , Proyectos Piloto , Técnicas Fotoacústicas/métodos , Neovascularización Patológica , Tomografía Computarizada por Rayos X , Nervios Periféricos/diagnóstico por imagen
20.
Methods Mol Biol ; 2635: 3-22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074654

RESUMEN

Spectral flow cytometry is a new technology that enables measurements of fluorescent spectra and light scattering properties in diverse cellular populations with high precision. Modern instruments allow simultaneous determination of up to 40+ fluorescent dyes with heavily overlapping emission spectra, discrimination of autofluorescent signals in the stained specimens, and detailed analysis of diverse autofluorescence of different cells-from mammalian to chlorophyll-containing cells like cyanobacteria. In this paper, we review the history, compare modern conventional and spectral flow cytometers, and discuss several applications of spectral flow cytometry.


Asunto(s)
Diagnóstico por Imagen , Colorantes Fluorescentes , Animales , Citometría de Flujo/métodos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA