Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157768

RESUMEN

The Gulf of Maine (GoM) is one of the fastest-warming parts of the world's oceans. Some species' distributional shifts have already been documented, especially for commercially-important species. Less is known about species that are not currently exploited but may become so in the future. As a case study into these issues, we focus on lumpfish (Cyclopterus lumpus) because of the recognized and timely need to understand wild lumpfish population dynamics to support sustainable fisheries and aquaculture developments. Using occurrence data from five different fisheries-dependent and independent surveys, we examined lumpfish distribution over time in the GoM. We found that lumpfish presence was more likely in Fall and correlated with deeper waters and colder bottom temperatures. Since 1980, lumpfish presence has increased over time and shifted north. Given a limited set of data, these findings should be interpreted with caution as additional work is needed to assess if the actual distribution of lumpfish is changing. Nevertheless, our work provides preliminary information for resource managers to ensure that lumpfish are harvested sustainably for use in emergent lumpfish aquaculture facilities.


Asunto(s)
Explotaciones Pesqueras , Animales , Maine , Dinámica Poblacional , Perciformes , Peces , Distribución Animal
2.
Glob Chang Biol ; 30(4): e17271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613240

RESUMEN

Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.


Asunto(s)
Biodiversidad , Cambio Climático , Filogenia , Geografía , Fenotipo
3.
Plants (Basel) ; 12(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37653883

RESUMEN

Rising temperatures and changes in precipitation patterns under climate change scenarios are accelerating the depletion of soil moisture and increasing the risk of drought, disrupting the conditions that many plant species need to survive. This study aims to establish the bioclimatic characterisation, both qualitative and quantitative, of ten native Californian Pinales for the period 1980-2019, and to determine their habitat suitability by 2050. To achieve this, an exhaustive search of the Gbif database for records of ten conifer taxa was carried out. To conduct the bioclimatic characterisation of the studied taxa, we worked with the monthly values of average temperature and precipitation for the period 1980-2019 from 177 meteorological stations. Linear regressions was performed in order to compile the future evolution of California's climate. Suitable areas and optimal areas were defined at the present time (1980-2019) and its future projection (2050). We applied Boolean logic and, in this investigation, the Conditional Logic Operator (CON) was used to determine the possible species presence (one) or absence (zero) for each of the 15 variables analysed. In general, most of the conifers studied here will experience a reduction in their habitat range in California by the year 2050 due to climate change, as well as the displacement of species towards optimal areas. Furthermore, the results have highlighted the applicability of bioclimatology to future conditions under climate change. This will aid conservation managers in implementing strategic measures to ameliorate the detrimental impacts of climate change, thereby ensuring the ecological integrity and sustainability of the affected conifer species.

4.
Sci Total Environ ; 889: 164273, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209731

RESUMEN

One of the key strategies for species to respond to climate change is range shift. It is commonly believed that species will migrate towards the poles and higher elevations due to climate change. However, some species may also shift in opposite directions (i.e., equatorward) to adapt to changes in other climatic variables beyond climatic isotherms. In this study, we focused on two evergreen broad-leaved Quercus species endemic to China and used ensemble species distribution models to project their potential distribution shifts and extinction risk under two shared socioeconomic pathways of six general circulation models for the years 2050 and 2070. We also investigated the relative importance of each climatic variable in explaining range shifts of these two species. Our findings indicate a sharp reduction in the habitat suitability for both species. Q. baronii and Q. dolicholepis are projected to experience severe range contractions, losing over 30 % and 100 % of their suitable habitats under SSP585 in the 2070s, respectively. Under the assumption of universal migration in future climate scenarios, Q. baronii is expected to move towards the northwest (~105 km), southwest (~73 km), and high elevation (180-270 m). The range shifts of both species are driven by temperature and precipitation variables, not only annual mean temperature. Specifically, precipitation seasonality and temperature annual range were the most crucial environmental variables, causing the contraction and expansion of Q. baronii and contraction of Q. dolicholepis, respectively. Our results highlight the importance of considering additional climatic variables beyond the annual mean temperature to explain species range shifts in multiple directions.


Asunto(s)
Quercus , Cambio Climático , Ecosistema , Temperatura , China
5.
Animals (Basel) ; 13(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36899712

RESUMEN

Global climate change has become a trend and is one of the main factors affecting biodiversity patterns and species distributions. Many wild animals adapt to the changing living environment caused by climate change by changing their habitats. Birds are highly sensitive to climate change. Understanding the suitable wintering habitat of the Eurasian Spoonbill (Platalea leucorodia leucorodia) and its response to future climatic change is essential for its protection. In China, it was listed as national grade II key protected wild animal in the adjusted State List of key protected wild animals in 2021, in Near Threatened status. Few studies on the distribution of the wintering Eurasian Spoonbill have been carried out in China. In this study, we simulated the suitable habitat under the current period and modeled the distribution dynamics of the wintering Eurasian Spoonbill in response to climate change under different periods by using the MaxEnt model. Our results showed that the current suitable wintering habitats for the Eurasian Spoonbill are mainly concentrated in the middle and lower reaches of the Yangtze River. Distance from the water, precipitation of the driest quarter, altitude, and mean temperature of the driest quarter contributed the most to the distribution model for the wintering Eurasian Spoonbill, with a cumulative contribution of 85%. Future modeling showed that the suitable distribution of the wintering Eurasian Spoonbill extends to the north as a whole, and the suitable area shows an increasing trend. Our simulation results are helpful in understanding the distribution of the wintering Eurasian Spoonbill under different periods in China and support species conservation.

6.
Sci Total Environ ; 860: 160375, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36423847

RESUMEN

Biological invasions represent a major threat for biodiversity and agriculture. Despite efforts to restrict the spread of alien species, preventing their introduction remains the best strategy for an efficient control. In that context preparedness of phytosanitary authorities is very important and estimating the geographical range of alien species becomes a key information. The present study investigates the potential geographical range of the glassy-winged sharpshooter (Homalodisca vitripennis), a very efficient insect vector of Xylella fastidiosa, one of the most dangerous plant-pathogenic bacteria worldwide. We use species distribution modeling (SDM) to analyse the climate factors driving the insect distribution and we evaluate its potential distribution in its native range (USA) and in Europe according to current climate and different scenarios of climate change: 6 General Circulation Models (GCM), 4 shared socioeconomic pathways of gas emission and 4 time periods (2030, 2050, 2070, 2090). The first result is that the climate conditions of the European continent are suitable to the glassy-winged sharpshooter, in particular around the Mediterranean basin where X. fastidiosa is present. Projections according to future climate conditions indicate displacement of climatically suitable areas towards the north in both North America and Europe. Globally, suitable areas will decrease in North America and increase in Europe in the coming decades. SDM outputs vary according to the GCM considered and this variability indicated areas of uncertainty in the species potential range. Both potential distribution and its uncertainty associated to future climate projections are important information for improved preparedness of phytosanitary authorities.


Asunto(s)
Cambio Climático , Hemípteros , Animales , Enfermedades de las Plantas/microbiología , Insectos Vectores/microbiología , Especies Introducidas
7.
Glob Chang Biol ; 27(23): 6071-6085, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34418236

RESUMEN

It is commonly accepted that species should move toward higher elevations and latitudes to track shifting isotherms as climate warms. However, temperature might not be the only limiting factor determining species distribution. Species might move to opposite directions to track changes in other climatic variables. Here, we used an extensive occurrence data set and an ensemble modelling approach to model the climatic niche and to predict the distribution of the seven baobab species (genus Adansonia) present in Madagascar. Using climatic projections from three global circulation models, we predicted species' future distribution and extinction risk for 2055 and 2085 under two representative concentration pathways (RCPs) and two dispersal scenarios. We disentangled the role of each climatic variable in explaining species range shift looking at relative variable importance and future climatic anomalies. Four baobab species (Adansonia rubrostipa, Adansonia madagascariensis, Adansonia perrieri¸ and Adansonia suarezensis) could experience a severe range contraction in the future (>70% for year 2085 under RCP 8.5, assuming a zero-dispersal hypothesis). For three out of the four threatened species, range contraction was mainly explained by an increase in temperature seasonality, especially in the North of Madagascar, where they are currently distributed. In tropical regions, where species are commonly adapted to low seasonality, we found that temperature seasonality will generally increase. It is, thus, very likely that many species in the tropics will be forced to move equatorward to avoid an increase in temperature seasonality. Yet, several ecological (e.g., equatorial limit, or unsuitable deforested habitat) or geographical barriers (absence of lands) could prevent species to move equatorward, thus increasing the extinction risk of many tropical species, like endemic baobab species in Madagascar.


Asunto(s)
Adansonia , Cambio Climático , Ecosistema , Geografía , Madagascar , Temperatura
8.
Glob Chang Biol ; 23(11): 4970-4986, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28500795

RESUMEN

The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use-driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species-specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up- vs. downstream) of predicted habitat shifts under coupled "moderate" and "severe" climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller-bodied fishes and to contract for larger-bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller-bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger-bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller-bodied species are rather restricted by their specific dispersal ability.


Asunto(s)
Distribución Animal , Cambio Climático , Ecosistema , Peces/fisiología , Animales , Europa (Continente) , Modelos Biológicos , Ríos , Especificidad de la Especie
9.
Glob Chang Biol ; 23(6): 2383-2395, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27976819

RESUMEN

Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.


Asunto(s)
Clima , Bosques , Árboles , Picea , Pinus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA