Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
1.
Plant Dis ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235416

RESUMEN

Fusarium solani species complex (FSSC) is a causal agent of collar rot and fruit rot in passion fruit worldwide. This study investigated the diversity and characteristics of FSSC isolates causing collar rot and fruit rot in Taiwanese passion fruit. Thirty-five FSSC isolates were harvested from collar rot and fruit rot samples of passion fruit from various cultivars and different geographical locations in Taiwan. The majority of these FSSC isolates caused collar rot and fruit rot disease of varying virulence in the stems and fruits of the purple and yellow cultivars of passion fruit. FSSC isolates were categorized into four groups: F. solani-melongenae (FSSC 21; n=29), F. solani (FSSC 5; n=1), F. liriodendri (FSSC 24; n=1), and an unknown group (n=4) based on the phylogenetic analysis of internal transcribed sequence (ITS), translation elongation factor 1 alpha (TEF-1α), and RNA polymerase II subunit 2 (RPB2) sequences. In Taiwan, F. solani-melongenae was the dominant species causing collar rot and fruit rot in passion fruit. F. solani-melongenae was a homothallic fungus that produced perithecia in diseased tissues. However, F. solani and F. liriodendri did not produce perithecia. The unknown FSSC group showed morphological characteristics similar to F. solani-melongenae and produced perithecia. Phylogenetic analysis based on the ITS and TEF-1α sequences demonstrated that the Taiwanese FSSC isolates were distinct from the Brazilian and Chinese FSSC isolates. In summary, FSSC isolates causing collar rot and fruit rot of Taiwanese passion fruit showed high diversity, potentially associated with the geographical locations.

2.
Front Microbiol ; 15: 1396213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149212

RESUMEN

Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39150443

RESUMEN

Two bacterial strains, SP1S1-4T and SP2S1-2T, were isolated from sediment samples collected in the Stockholm archipelago in November 2021. Following whole-genome sequencing, these strains were identified as tentatively belonging to two novel Shewanella genospecies, based on digital DNA-DNA hybridization, as implemented in the Type Strain Genome Server. Shewanella septentrionalis, Shewanella baltica and Shewanella hafniensis were, in this order and within a narrow genomic relatedness range, their closest genotypic relatives. Additional sampling and sequencing efforts led to the retrieval of distinct isolates that were monophyletic with SP1S1-4T and SP2S1-2T, respectively, based on phylogenomic analysis of whole-genome sequences. Comparative analyses of genome sequence data, which included blast-based average nucleotide identity, core genome-based and core proteome-based phylogenomics, in addition to MALDI-TOF MS-based protein profiling, confirmed the distinctness of the putative novel genospecies with respect to their closest genotypic relatives. A comprehensive phenotypic characterisation of SP1S1-4T and SP2S1-2T revealed only minor differences with respect to the type strains of S. septentrionalis, S. baltica and S. hafniensis. Based on the collective phylogenomic, proteomic, and phenotypic evidence presented here, we describe two novel genospecies within the genus Shewanella, for which the names Shewanella scandinavica sp. nov. and Shewanella vaxholmensis sp. nov. are proposed. The type strains are, respectively, SP2S1-2T (=CCUG 76457T=CECT 30688T), with a draft genome sequence of 5 041 805 bp and a G+C content of 46.3 mol%, and SP1S1-4T (=CCUG 76453T=CECT 30684T), with a draft genome sequence of 4 920147 bp and a G+C content of 46.0 mol%. Our findings suggest the existence of a species complex formed by the species S. baltica, S. septentrionalis, S. scandinavica sp. nov., and S. vaxholmensis sp. nov., with S. hafniensis falling in the periphery, where distinct genomic species clusters could be identified. However, this does not exclude the possibility of a continuum of genomic diversity within this sedimental ecosystem, as discussed herein with additional sequenced isolates.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Genoma Bacteriano , Sedimentos Geológicos , Filogenia , Análisis de Secuencia de ADN , Shewanella , Secuenciación Completa del Genoma , Shewanella/genética , Shewanella/aislamiento & purificación , Shewanella/clasificación , Sedimentos Geológicos/microbiología , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Hibridación de Ácido Nucleico , Agua de Mar/microbiología , Genotipo , Composición de Base
4.
Plants (Basel) ; 13(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39204619

RESUMEN

Sisyrinchium, a large genus of the Iridaceae family, is divided into ten sections and defined by genetic, morphological and phylogenetic traits. The section Viperella, though monophyletic, encounters taxonomic hurdles, particularly within the Sisyrinchium palmifolium L. and Sisyrinchium vaginatum Spreng complexes, resulting in numerous misidentifications. The taxonomic confusion in the group may stem from various factors, emphasizing extensive morphological variations, leading to overlapping characteristics. We used morphometric approaches to better characterize the species belonging to two complexes, assess their variation and identify diagnostic traits for taxonomy enhancement. We assessed 16 quantitative traits for the S. palmifolium complex and 15 for the S. vaginatum complex, totaling 652 specimens recorded across 15 herbaria covering the entire species' distribution area. In the S. vaginatum complex, 66.5% of the variations were accounted for in the first two axes, while in the S. palmifolium complex, the first two axes explained 55.3%. Our findings revealed that both complexes exhibited many morphological variations, leading to a characteristic overlap. These characteristics may have arisen due to recent diversifications of the group and niche overlaps. Additionally, we identified some morphological characteristics that are useful for distinguishing species. Finally, we compiled a section gathering all useful characteristics for species delimitation within the group, aiming to facilitate non-experts in deciphering this species complex.

5.
mBio ; : e0032324, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191402

RESUMEN

Soilborne Ralstonia solanacearum species complex (RSSC) pathogens disrupt microbial communities as they invade roots and fatally wilt plants. RSSC pathogens secrete antimicrobial toxins using a type VI secretion system (T6SS). To investigate how evolution and ecology have shaped the T6SS of these bacterial pathogens, we analyzed the T6SS gene content and architecture across the RSSC and their evolutionary relatives. Our analysis reveals that two ecologically similar Burkholderiaceae taxa, xylem-pathogenic RSSC and Paracidovorax, have convergently evolved to wield large arsenals of T6SS toxins. To understand the mechanisms underlying genomic enrichment of T6SS toxins, we compiled an atlas of 1,066 auxiliary T6SS toxin clusters ("aux" clusters) across 99 high-quality RSSC genomes. We classified 25 types of aux clusters with toxins that predominantly target lipids, nucleic acids, or unknown cellular substrates. The aux clusters were located in diverse genetic neighborhoods and had complex phylogenetic distributions, suggesting frequent horizontal gene flow. Phages and other mobile genetic elements account for most of the aux cluster acquisition on the chromosome but very little on the megaplasmid. Nevertheless, RSSC genomes were more enriched in aux clusters on the megaplasmid. Although the single, ancestral T6SS was broadly conserved in the RSSC, the T6SS has been convergently lost in atypical, non-soilborne lineages. Overall, our data suggest dynamic interplay between the lifestyle of RSSC lineages and the evolution of T6SSes with robust arsenals of toxins. This pangenomic atlas poises the RSSC as an emerging, tractable model to understand the role of the T6SS in shaping pathogen populations.IMPORTANCEWe explored the eco-evolutionary dynamics that shape the inter-microbial warfare mechanisms of a globally significant plant pathogen, the Ralstonia solanacearum species complex. We discovered that most Ralstonia wilt pathogens have evolved extensive and diverse repertoires of type VI secretion system-associated antimicrobial toxins. These expansive toxin arsenals potentially enhance the ability of Ralstonia pathogens to invade plant microbiomes, enabling them to rapidly colonize and kill their host plants. We devised a classification system to categorize the Ralstonia toxins. Interestingly, many of the toxin gene clusters are encoded on mobile genetic elements, including prophages, which may be mutualistic symbionts that enhance the inter-microbial competitiveness of Ralstonia wilt pathogens. Moreover, our findings suggest that the convergent loss of this multi-gene trait contributes to genome reduction in two vector-transmitted lineages of Ralstonia pathogens. Our findings demonstrate that the interplay between microbial ecology and pathogen lifestyle shapes the evolution of a genetically complex antimicrobial weapon.

6.
Pestic Biochem Physiol ; 203: 106006, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084801

RESUMEN

Peach is one of the popular and economically important fruit crops in China. Peach cultivation is hampered due to attacks of anthracnose disease, causing significant economic losses. Colletotrichum fructicola and Colletotrichum siamense belong to the Colletotrichum gloeosporioides species complex and are considered major pathogens of peach anthracnose. Application of different groups of fungicides is a routine approach for controlling this disease. However, fungicide resistance is a significant drawback in managing peach anthracnose nowadays. In this study, 39 isolates of C. fructicola and 41 isolates of C. siamense were collected from different locations in various provinces in China. The sensitivity of C. fructicola and C. siamense to some commonly used fungicides, i.e., carbendazim, iprodione, fluopyram, and propiconazole, was determined. All the isolates of C. fructicola collected from Guangdong province showed high resistance to carbendazim, whereas isolates collected from Guizhou province were sensitive. In C. siamense, isolates collected from Hebei province showed moderate resistance, while those from Shandong province were sensitive to carbendazim. On the other hand, all the isolates of C. fructicola and C. siamense showed high resistance to the dicarboximide (DCF) fungicide iprodione and succinate dehydrogenase inhibitor (SDHI) fungicide fluopyram. However, they are all sensitive to the demethylation inhibitor (DMI) fungicide propiconazole. Positive cross-resistance was observed between carbendazim and benomyl as they are members of the same methyl benzimidazole carbamate (MBC) group. While no correlation of sensitivity was observed between different groups of fungicides. No significant differences were found in each fitness parameter between carbendazim-resistant and sensitive isolates in both species. Molecular characterization of the ß-tubulin 2 (TUB2) gene revealed that in C. fructicola, the E198A point mutation was the determinant for the high resistance to carbendazim, while the F200Y point mutation was linked with the moderate resistance to carbendazim in C. siamense. Based on the results of this study, DMI fungicides, e.g., propiconazole or prochloraz could be used to control peach anthracnose, especially at locations where the pathogens have already developed the resistance to carbendazim and other fungicides.


Asunto(s)
Carbamatos , Colletotrichum , Farmacorresistencia Fúngica , Fungicidas Industriales , Enfermedades de las Plantas , Prunus persica , Colletotrichum/efectos de los fármacos , Colletotrichum/genética , Fungicidas Industriales/farmacología , Prunus persica/microbiología , Enfermedades de las Plantas/microbiología , Carbamatos/farmacología , China , Bencimidazoles/farmacología , Hidantoínas/farmacología , Triazoles/farmacología , Aminoimidazol Carboxamida/análogos & derivados
7.
Front Microbiol ; 15: 1431047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983626

RESUMEN

Bacterial soft rot caused by coinfection with Dickeya spp. and Pectobacterium spp. in hosts can cause successive changes in fields, and it is difficult to prevent the spread of and control the infection. Pectobacterium spp. are prevalent in the growing areas of tuberous crops, including taro and potato. Recently, Dickeya fangzhongdai has emerged as a virulent pathogen in taro. To determine the prevalence status of the causal agents and evaluate the potential spreading risks of D. fangzhongdai, screening and taxonomic classification were performed on phytopathogenic bacteria collected from different taro-growing areas in Guangdong Province, China, and biological and genomic characteristics were further compared among typical strains from all defined species. The causative agents were verified to be phytobacterial strains of D. fangzhongdai, Pectobacterium aroidearum and Pectobacterium colocasium. P. aroidearum and P. colocasium were found to form a complex preferring Araceae plants and show intensive genomic differentiation, indicating their ancestor had adapted to taro a long time prior. Compared with Pectobacterium spp., D. fangzhongdai was more virulent to taro corms under conditions of exogenous infection and more adaptable at elevated temperatures. D. fangzhongdai strains isolated from taro possessed genomic components of additional T4SSs, which were accompanied by additional copies of the hcp-vgrG genes of the T6SS, and these contributed to the expansion of their genomes. More gene clusters encoding secondary metabolites were found within the D. fangzhongdai strains than within the Pectobacterium complex; interestingly, distinct gene clusters encoding zeamine and arylpolyene were both most similar to those in D. solani that caused potato soft rot. These comparisons provided genomic evidences for that the newly emerging pathogen was potentially equipped to compete with other pathogens. Diagnostic qPCR verified that D. fangzhongdai was prevalent in most of the taro-growing areas and coexisted with the Pectobacterium complex, while the plants enriching D. fangzhongdai were frequently symptomatic at developing corms and adjacent pseudostems and caused severe symptoms. Thus, the emerging need for intensive monitoring on D. fangzhongdai to prevent it from spreading to other taro-growing areas and to other tuberous crops like potato; the adjustment of control strategies based on different pathopoiesis characteristics is recommended.

8.
Emerg Infect Dis ; 30(8): 1545-1554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043387

RESUMEN

Human infections with Corynebacterium diphtheriae species complex (CdSC) bacteria were rare in French Guiana until 2016, when the number of cases diagnosed increased. We conducted an epidemiologic, multicenter, retrospective study of all human CdSC infections diagnosed in French Guiana during January 1, 2016-December 31, 2021. A total of 64 infectious episodes were observed in 60 patients; 61 infections were caused by C. diphtheriae and 3 by C. ulcerans. Estimated incidence increased from 0.7 cases/100,000 population in 2016 to 7.7 cases/100,000 population in 2021. The mean patient age was 30.4 (+23.7) years, and male-to-female ratio was 1.7:1 (38/22). Of the 61 C. diphtheriae isolates, 5 tested positive for the diphtheria toxin gene, and all results were negative by Elek test; 95% (61/64) of cases were cutaneous, including the C. ulcerans cases. The increase in reported human infections underscores the need to raise awareness among frontline healthcare practitioners to improve prevention.


Asunto(s)
Corynebacterium diphtheriae , Difteria , Humanos , Guyana Francesa/epidemiología , Estudios Retrospectivos , Femenino , Masculino , Corynebacterium diphtheriae/aislamiento & purificación , Corynebacterium diphtheriae/genética , Adulto , Persona de Mediana Edad , Adolescente , Niño , Adulto Joven , Preescolar , Difteria/epidemiología , Difteria/microbiología , Anciano , Incidencia , Lactante , Historia del Siglo XXI , Infecciones por Corynebacterium/epidemiología , Infecciones por Corynebacterium/microbiología
9.
Zookeys ; 1205: 51-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947165

RESUMEN

In this work, the diversity of the genus Orbiniella in the Nordic Seas and the North Atlantic waters south of Iceland is studied based on the analyses of molecular markers (mitochondrial COI, 16S rDNA and nuclear ITS2) and morphological characters. Our results showed the presence of at least five genetic lineages in the studied material which could also be morphologically identified by their segmental annulation patterns, the number and the shape of acicular spines, and the length and the shape of pygidial lobes. The species name Orbiniellapetersenae is assigned to one of the lineages restricting its geographical and vertical distribution to the deep-sea areas north of Iceland and Jan Mayen, and three lineages are described as new species (i.e., Orbiniellagriegi Meca & Budaeva, sp. nov., Orbiniellamayhemi Meca & Budaeva, sp. nov., and Orbiniellaparapari Meca & Budaeva, sp. nov.) elevating the number of known species in the genus to 25. Three deep-sea species of Orbiniella in our study are reported only north of the Greenland-Iceland-Scotland Ridge, one deep-sea species found south of the ridge. A single shallow-water species is distributed along the ridge and on the Norwegian shelf.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39063392

RESUMEN

The objective of this review was to update the current knowledge on major malaria vectors in Sri Lanka and their bio-ecology and insecticide resistance status. Relevant data were collected through a comprehensive literature search performed using databases such as PubMed, NIH, Google Scholar and Web of Science. Sri Lanka had been endemic to malaria for centuries. However, due to a coordinated public health effort last indigenous malaria case was reported in 2012 and the island nation was declared free of malaria in 2016. Although 25 anopheline mosquitoes have been reported so far on the island, only Anopheles culicifacies and An. subpictus have been established as primary and secondary vectors of malaria respectively. Both vector species exist as a species complex, and the sibling species of each complex differ in their bio-ecology and susceptibility to malaria parasites and insecticides. The article provides a comprehensive and updated account of the bio-ecology and insecticide resistance of malaria vectors and highlights the challenges ahead of retaining a malaria-free status.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Malaria , Mosquitos Vectores , Sri Lanka/epidemiología , Animales , Malaria/prevención & control , Malaria/epidemiología , Anopheles/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Insecticidas/farmacología , Humanos
11.
Mycologia ; 116(5): 642-649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913569

RESUMEN

Amanita is one of the most salient mushroom genera due to its cultural, economic, and medical importance. Recently, many new Amanita species have been described worldwide, increasing the genus richness. However, several clades have cryptic diversity, and many species complexes have not yet been resolved. This is the case of the rubescent species in the Validae section, which have been widely cited under the name Amanita rubescens s.l. We used a four-locus matrix (nuc rDNA internal transcribed spacer [ITS] and 28S regions and genes for RNA polymerase II subunit 2 [rpb2], translation elongation factor 1-α [tef1-α], and ß-tubulin [tub2]) to solve the phylogenetic relationships within the Amanita section Validae. To analyze the diversity and distribution patterns of species, we used an extensive ITS sequence sampling including environmental DNA databases. The phylogenetic analyses demonstrated that the Validae section is divided into three monophyletic and highly supported major clades: Mappae, Validae, and Rubescentes. At least 11 species-level clades within the Rubescentes clade were highly supported: A. cruentilemurum nom. prov. A. brunneolocularis, A. rubescens s.s. (European clade), A. rubescens s.s. (Asiatic clade), A. orsonii s.s. A. 'orsonii,' A. aureosubucula nom. prov., A. novinupta, A. flavorubens, and two undescribed North American species. We proved that A. rubescens s.s. has two segregated populations (European and Asiatic) and it is not naturally distributed in America. Furthermore, we found that America has more cryptic species within the Rubescentes clade than Eurasia.


Asunto(s)
Amanita , ADN de Hongos , ADN Espaciador Ribosómico , Filogenia , ARN Polimerasa II , Tubulina (Proteína) , ADN de Hongos/genética , Amanita/genética , Amanita/clasificación , ADN Espaciador Ribosómico/genética , ARN Polimerasa II/genética , Tubulina (Proteína)/genética , Variación Genética , Análisis de Secuencia de ADN , Factor 1 de Elongación Peptídica/genética , ARN Ribosómico 28S/genética , Biodiversidad
12.
Phytopathology ; 114(8): 1782-1790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829851

RESUMEN

Nontoxic alternatives to chemical soil fumigants for suppressing soilborne pathogens such as Fusarium oxysporum (Fo), one causative agent of strawberry black root rot complex prevalent in the Southeastern United States, are urgently needed. A promising alternative is anaerobic soil disinfestation, in which soil is amended with labile organic materials, irrigated to field capacity, and tarped to induce anaerobic fermentation for a brief period before planting. Pathogen-suppression mechanisms of anaerobic soil disinfestation include anaerobic conditions and generation of reduced metal cations (Fe2+ and Mn2+) and volatile fatty acids (VFAs; e.g., acetic, n-butyric, isovaleric, and others). However, little is known about how the interaction between VFAs, reduced metals, soil texture, and liming influences suppression of Fo. We investigated Fo suppression by VFAs and reduced metal cations in both aqueous and soil-based incubation trials. Inoculum containing Fo chlamydospores was added to aqueous medium containing either 5 or 10 mmol/liter VFAs and either 0.01 or 0.05% (wt/wt) reduced metals. In soil-based incubations, chlamydospore-containing inoculum was applied to sandy, sandy loam, and silty clay soil saturated by solutions containing 10 or 20 mmol/liter VFAs with or without 0.05% (wt/wt) reduced metals. VFAs, particularly in combination with Fe2+ in aqueous solutions and Mn2+ in soils, significantly reduced Fo viability. At the same time, liming and higher soil clay content reduced the effectiveness of VFAs and reduced metals for suppressing Fo, highlighting the influence of soil pH and soil texture on anaerobic soil disinfestation effectiveness.


Asunto(s)
Fragaria , Fusarium , Enfermedades de las Plantas , Raíces de Plantas , Microbiología del Suelo , Suelo , Fusarium/fisiología , Fusarium/crecimiento & desarrollo , Fusarium/efectos de los fármacos , Fragaria/microbiología , Fragaria/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Suelo/química , Raíces de Plantas/microbiología , Anaerobiosis , Ácidos Grasos Volátiles/metabolismo
13.
J Fungi (Basel) ; 10(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38921425

RESUMEN

Within the genus Mycena, species exhibiting brownish basidiomata present considerable challenges in identification due to similar coloration. This study underscores the significance of pileipellis types and cheilocystidia characteristics as critical in delimiting brownish Mycena species. To clarify the principal taxonomic characters and their utility in distinguishing between brownish Mycena species, a morphological taxonomy and phylogenetic analysis were performed. Five new species from China were introduced and characterized through a comprehensive morphological anatomy and phylogenetic substantiation: M. campanulatihemisphaerica sp. nov., M. digitifurcata sp. nov., M. kunyuensis sp. nov., M. limitis sp. nov., and M. oryzifluens sp. nov. Discussions of these taxa are supplemented with morphological illustrations. The phylogenetic relationships were inferred using Bayesian Inference and Maximum Likelihood methods based on sequences from the internal transcribed spacer and the large subunit regions of nuclear ribosomal RNA. With the addition of these five new species, the worldwide count of brownish Mycena increases to 94, and a key to the 29 known species of brownish Mycena from China is presented.

14.
BMC Plant Biol ; 24(1): 616, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937691

RESUMEN

BACKGROUND: Caryodaphnopsis, a group of tropical trees (ca. 20 spp.) in the family Lauraceae, has an amphi-Pacific disjunct distribution: ten species are distributed in Southeast Asia, while eight species are restricted to tropical rainforests in South America. Previously, phylogenetic analyses using two nuclear markers resolved the relationships among the five species from Latin America. However, the phylogenetic relationships between the species in Asia remain poorly known. RESULTS: Here, we first determined the complete mitochondrial genome (mitogenome), plastome, and the nuclear ribosomal cistron (nrDNA) sequences of C. henryi with lengths of 1,168,029 bp, 154,938 bp, and 6495 bp, respectively. We found 2233 repeats and 368 potential SSRs in the mitogenome of C. henryi and 50 homologous DNA fragments between its mitogenome and plastome. Gene synteny analysis revealed a mass of rearrangements in the mitogenomes of Magnolia biondii, Hernandia nymphaeifolia, and C. henryi and only six conserved clustered genes among them. In order to reconstruct relationships for the ten Caryodaphnopsis species in Asia, we created three datasets: one for the mitogenome (coding genes and ten intergenic regions), another for the plastome (whole genome), and the other for the nuclear ribosomal cistron. All of the 22 Caryodaphnopsis individuals were divided into four, five, and six different clades in the phylogenies based on mitogenome, plastome, and nrDNA datasets, respectively. CONCLUSIONS: The study showed phylogenetic conflicts within and between nuclear and organellar genome data of Caryodaphnopsis species. The sympatric Caryodaphnopsis species in Hekou and Malipo SW China may be related to the incomplete lineage sorting, chloroplast capture, and/or hybridization, which mixed the species as a complex in their evolutionary history.


Asunto(s)
Genoma Mitocondrial , Lauraceae , Filogenia , Lauraceae/genética , Lauraceae/clasificación , Genoma de Planta
15.
J Clin Microbiol ; 62(6): e0172523, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38780286

RESUMEN

The environmental bacterium Klebsiella oxytoca displays an alarming increase of antibiotic-resistant strains that frequently cause outbreaks in intensive care units. Due to its prevalence in the environment and opportunistic presence in humans, molecular surveillance (including resistance marker screening) and high-resolution cluster analysis are of high relevance. Furthermore, K. oxytoca previously described in studies is rather a species complex (KoSC) than a single species comprising at least six closely related species that are not easily differentiated by standard typing methods. To reach a discriminatory power high enough to identify and resolve clusters within these species, whole genome sequencing is necessary. The resolution is achievable with core genome multilocus sequence typing (cgMLST) extending typing of a few housekeeping genes to thousands of core genome genes. CgMLST is highly standardized and provides a nomenclature enabling cross laboratory reproducibility and data exchange for routine diagnostics. Here, we established a cgMLST scheme not only capable of resolving the KoSC species but also producing reliable and consistent results for published outbreaks. Our cgMLST scheme consists of 2,536 core genome and 2,693 accessory genome targets, with a percentage of good cgMLST targets of 98.31% in 880 KoSC genomes downloaded from the National Center for Biotechnology Information (NCBI). We also validated resistance markers against known resistance gene patterns and successfully linked genetic results to phenotypically confirmed toxic strains carrying the til gene cluster. In conclusion, our novel cgMLST enables highly reproducible typing of four different clinically relevant species of the KoSC and thus facilitates molecular surveillance and cluster investigations.


Asunto(s)
Genoma Bacteriano , Klebsiella oxytoca , Tipificación de Secuencias Multilocus , Tipificación de Secuencias Multilocus/métodos , Klebsiella oxytoca/genética , Klebsiella oxytoca/clasificación , Klebsiella oxytoca/aislamiento & purificación , Humanos , Genoma Bacteriano/genética , Filogenia , Infecciones por Klebsiella/microbiología , Secuenciación Completa del Genoma , Técnicas de Tipificación Bacteriana/métodos , Genes Esenciales/genética , Reproducibilidad de los Resultados
16.
Mycoses ; 67(5): e13728, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695201

RESUMEN

BACKGROUND: Fungal keratitis is a severe eye infection that can result in blindness and visual impairment, particularly in developing countries. Fusarium spp. are the primary causative agents of this condition. Diagnosis of Fusarium keratitis (FK) is challenging, and delayed treatment can lead to serious complications. However, there is limited epidemiological data on FK, especially in tropical areas. OBJECTIVES: This study aimed to describe the clinical, laboratorial and epidemiological characteristics of FK in a tropical semi-arid region of Brazil. PATIENTS/METHODS: Adult patients with laboratory-confirmed FK diagnosed between October 2019 and March 2022 were evaluated. Fusarium isolates were characterized at molecular level and evaluated regarding antifungal susceptibility. RESULTS: A total of 226 clinical samples from patients suspected of keratitis were evaluated; fungal growth was detected in 50 samples (22.12%); out of which 42 were suggestive of Fusarium spp. (84%). Molecular analysis of a randomly selected set of 27 isolates identified F. solani species complex (n = 14); F. fujikuroi sensu lato (n = 6) and F. dimerum sensu lato (n = 7); a total of 10 haplotypes were identified among the strains. All but one Fusarium strains were inhibited by amphotericin B, natamycin and fluconazole. Most patients were male (71.42%; 30 out of 42), aged from 27 to 73 years old. Trauma was the most important risk factor for FK (40.47%; 17 out of 42). Patients were treated with antifungals, corticoids and antibiotics; keratoplasty and eye enucleation were also performed. CONCLUSIONS: The study provided insights into the characteristics of FK in tropical regions and emphasized the importance of enhanced surveillance and management strategies.


Asunto(s)
Antifúngicos , Infecciones Fúngicas del Ojo , Fusariosis , Fusarium , Queratitis , Pruebas de Sensibilidad Microbiana , Humanos , Brasil/epidemiología , Fusarium/genética , Fusarium/efectos de los fármacos , Fusarium/aislamiento & purificación , Fusarium/clasificación , Masculino , Femenino , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Adulto , Queratitis/microbiología , Queratitis/epidemiología , Queratitis/tratamiento farmacológico , Persona de Mediana Edad , Fusariosis/microbiología , Fusariosis/epidemiología , Fusariosis/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Infecciones Fúngicas del Ojo/epidemiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Anciano , Adulto Joven , Adolescente , Clima Tropical , Anciano de 80 o más Años , Anfotericina B/farmacología , Anfotericina B/uso terapéutico
17.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734639

RESUMEN

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Asunto(s)
Culicidae , Código de Barras del ADN Taxonómico , Culicidae/anatomía & histología , Culicidae/clasificación , Culicidae/genética , Mosquitos Vectores/anatomía & histología , Mosquitos Vectores/clasificación , Mosquitos Vectores/genética , Código de Barras del ADN Taxonómico/métodos , Ciclooxigenasa 1/genética , ADN Espaciador Ribosómico/genética , Filogenia
18.
Plant Dis ; : PDIS06231068RE, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38616409

RESUMEN

Crop declines have been observed in raspberry and blueberry farms in the southwest region of Spain, which is the most important berry-producing area in the country. This study aimed to identify and characterize the pathogens associated with these diseases using molecular and morphological methods. Additionally, pathogenicity tests were performed on different raspberry, blueberry, and strawberry cultivars to determine possible susceptible hosts in the area. An isolate of Phytophthora cactorum was obtained from a symptomatic strawberry plant, an isolate of P. cinnamomi was obtained from a symptomatic blueberry plant, and isolates identified as P. rosacearum, P. rubi, and a previously unknown species named P. balkanensis were recovered from symptomatic raspberry plants. Results from the pathogenicity tests reported, for the first time, P. rubi causing root rot and wilting complex in Spanish raspberry crops. Additionally, P. cinnamomi was found to affect highbush blueberry production in Spain. Thus, this study provides valuable insights into the identification and characterization of Phytophthora spp. associated with the decline of blueberry and raspberry crops in Huelva. It also provides essential recommendations regarding the potential risks associated with the use of other types of berries as rotational crops and emphasizes the necessity for effective management strategies to mitigate crop losses. This is particularly critical given the limited soil disinfection alternatives available in Spain.

19.
Zookeys ; 1196: 209-242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586075

RESUMEN

Two new species allied to Cnemaspisgalaxia are described from the eastern slopes of the south Western Ghats, Tamil Nadu, India. Both new species are members of the ornata subclade within the beddomei clade. The two new species can be easily distinguished from all other members of the beddomei clade and each other by a combination of nonoverlapping morphological characters such as small body size, distinct colouration of both sexes, the number of dorsal tubercles around the body, the number or arrangement of paravertebral tubercles, the number of midventral scales across the belly and longitudinal ventral scales from mental to cloaca, besides uncorrected pairwise ND2 and 16S sequence divergence of ≥ 7.4% and ≥ 2.7%. The two new species are distributed from low elevation, deciduous forests of Srivilliputhur, and add to the five previously known endemic vertebrates from Srivilliputhur-Megamalai Tiger Reserve.

20.
J Fungi (Basel) ; 10(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38535212

RESUMEN

Similar to cacao pod rot, cherelle wilt decreases production from cacao fields. Among all known fungal pathogens of the cacao, Colletotrichum spp. are common infectious agents that affect the cherelles and pods of cacao; thus, cacao diseases are often classified by stage. Therefore, knowing whether these pathogens are common in both fruit stages is necessary for implementing disease control measures. Symptoms of cherelle wilt were found in cacao plants in Pangasinan, Philippines, in 2022. The fungal strain obtained from the lesion was found to be pathogenic towards cherelles, but not towards pods. The strain was classified as an unknown species belonging to the gigasporum species complex, based on the morphological and molecular phylogenetic analyses of ITS, GAPDH, CHS1, ACT, and TUB2. We propose Colletotrichum kapreanum sp. nov. as a causal agent of cacao cherelle wilt, but not pod rot.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA