Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomark Res ; 12(1): 107, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294728

RESUMEN

As one of the most common tumors in women, the pathogenesis and tumor heterogeneity of breast cancer have long been the focal point of research, with the emergence of tumor metastasis and drug resistance posing persistent clinical challenges. The emergence of single-cell sequencing (SCS) technology has introduced novel approaches for gaining comprehensive insights into the biological behavior of malignant tumors. SCS is a high-throughput technology that has rapidly developed in the past decade, providing high-throughput molecular insights at the individual cell level. Furthermore, the advent of multitemporal point sampling and spatial omics also greatly enhances our understanding of cellular dynamics at both temporal and spatial levels. The paper provides a comprehensive overview of the historical development of SCS, and highlights the most recent advancements in utilizing SCS and spatial omics for breast cancer research. The findings from these studies will serve as valuable references for future advancements in basic research, clinical diagnosis, and treatment of breast cancer.

2.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39293805

RESUMEN

Single-cell multi-omics integration enables joint analysis at the single-cell level of resolution to provide more accurate understanding of complex biological systems, while spatial multi-omics integration is benefit to the exploration of cell spatial heterogeneity to facilitate more comprehensive downstream analyses. Existing methods are mainly designed for single-cell multi-omics data with little consideration of spatial information and still have room for performance improvement. A reliable multi-omics integration method designed for both single-cell and spatially resolved data is necessary and significant. We propose a multi-omics integration method based on dual-path graph attention auto-encoder (SSGATE). It can construct the neighborhood graphs based on single-cell expression profiles or spatial coordinates, enabling it to process single-cell data and utilize spatial information from spatially resolved data. It can also perform self-supervised learning for integration through the graph attention auto-encoders from two paths. SSGATE is applied to integration of transcriptomics and proteomics, including single-cell and spatially resolved data of various tissues from different sequencing technologies. SSGATE shows better performance and stronger robustness than competitive methods and facilitates downstream analysis.


Asunto(s)
Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Biología Computacional/métodos , Humanos , Proteómica/métodos , Algoritmos , Transcriptoma , Multiómica
3.
Cell Rep Methods ; 4(8): 100838, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39127044

RESUMEN

Tissues are organized into anatomical and functional units at different scales. New technologies for high-dimensional molecular profiling in situ have enabled the characterization of structure-function relationships in increasing molecular detail. However, it remains a challenge to consistently identify key functional units across experiments, tissues, and disease contexts, a task that demands extensive manual annotation. Here, we present spatial cellular graph partitioning (SCGP), a flexible method for the unsupervised annotation of tissue structures. We further present a reference-query extension pipeline, SCGP-Extension, that generalizes reference tissue structure labels to previously unseen samples, performing data integration and tissue structure discovery. Our experiments demonstrate reliable, robust partitioning of spatial data in a wide variety of contexts and best-in-class accuracy in identifying expertly annotated structures. Downstream analysis on SCGP-identified tissue structures reveals disease-relevant insights regarding diabetic kidney disease, skin disorder, and neoplastic diseases, underscoring its potential to drive biological insight and discovery from spatial datasets.


Asunto(s)
Biología Computacional , Humanos , Animales , Biología Computacional/métodos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Ratones , Enfermedades de la Piel/genética , Enfermedades de la Piel/patología
4.
Pathol Res Pract ; 262: 155503, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128411

RESUMEN

Gastric cancer (GC), a globally prevalent and lethal malignancy, continues to be a key research focus. However, due to its considerable heterogeneity and complex pathogenesis, the treatment and diagnosis of gastric cancer still face significant challenges. With the rapid development of spatial omics technology, which provides insights into the spatial information within tumor tissues, it has emerged as a significant tool in gastric cancer research. This technology affords new insights into the pathology and molecular biology of gastric cancer for scientists. This review discusses recent advances in spatial omics technology for gastric cancer research, highlighting its applications in the tumor microenvironment (TME), tumor heterogeneity, tumor genesis and development mechanisms, and the identification of potential biomarkers and therapeutic targets. Moreover, this article highlights spatial omics' potential in precision medicine and summarizes existing challenges and future directions. It anticipates spatial omics' continuing impact on gastric cancer research, aiming to improve diagnostic and therapeutic approaches for patients. With this review, we aim to offer a comprehensive overview to scientists and clinicians in gastric cancer research, motivating further exploration and utilization of spatial omics technology. Our goal is to improve patient outcomes, including survival rates and quality of life.


Asunto(s)
Biomarcadores de Tumor , Genómica , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Medicina de Precisión , Proteómica/métodos
5.
Sci Rep ; 14(1): 18934, 2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147769

RESUMEN

The utility of spatial omics in leveraging cellular interactions in normal and diseased states for precision medicine is hampered by a lack of strategies for matching disease states with spatial heterogeneity-guided cellular annotations. Here we use a spatial context-dependent approach that matches spatial pattern detection to cell annotation. Using this approach in existing datasets from ulcerative colitis patient colonic biopsies, we identified architectural complexities and associated difficult-to-detect rare cell types in ulcerative colitis germinal-center B cell follicles. Our approach deepens our understanding of health and disease pathogenesis, illustrates a strategy for automating nested architecture detection for highly multiplexed spatial biology data, and informs precision diagnosis and therapeutic strategies.


Asunto(s)
Colitis Ulcerosa , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/genética , Humanos , Colon/patología , Colon/metabolismo , Biopsia
6.
Front Cell Dev Biol ; 12: 1378875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105173

RESUMEN

While spatial transcriptomics has undeniably revolutionized our ability to study cellular organization, it has driven the development of a great number of innovative transcriptomics methods, which can be classified into in situ sequencing (ISS) methods, in situ hybridization (ISH) techniques, and next-generation sequencing (NGS)-based sequencing with region capture. These technologies not only refine our understanding of cellular processes, but also open up new possibilities for breakthroughs in various research domains. One challenge of spatial transcriptomics experiments is the limitation of RNA detection due to optical crowding of RNA in the cells. Expansion microscopy (ExM), characterized by the controlled enlargement of biological specimens, offers a means to achieve super-resolution imaging, overcoming the diffraction limit inherent in conventional microscopy and enabling precise visualization of RNA in spatial transcriptomics methods. In this review, we elaborate on ISS, ISH and NGS-based spatial transcriptomic protocols and on how performance of these techniques can be extended by the combination of these protocols with ExM. Moving beyond the techniques and procedures, we highlight the broader implications of transcriptomics in biology and medicine. These include valuable insight into the spatial organization of gene expression in cells within tissues, aid in the identification and the distinction of cell types and subpopulations and understanding of molecular mechanisms and intercellular changes driving disease development.

7.
J Mass Spectrom ; 59(8): e5074, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39017393

RESUMEN

Mass spectrometry imaging (MSI) was developed to visualize spatial chemical information within tissues, thereby facilitating spatial multi-omic analysis. However, due to the limited spatial information provided by individual modal MSI, correlating various chemical data within tissues remains a significant challenge. In recent years, multimodal MSI has garnered considerable attention due to its ability to visualize the spatial distributions of multiple biomolecules within tissues. Among the strategies employed in this field, multimodal imaging on a single tissue section circumvents multiple issues introduced by integration of images of consecutive tissue sections. In this minireview, we provide an overview of multimodal MSI on a single tissue section, with a particular focus on the use of Matrix-Assisted Laser Desorption/Ionization-MSI for spatial multi-omic investigations that offer a comprehensive and in-depth elucidation of the biological state and activities, aiming to inspire the development of new approaches in this field.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Humanos , Animales , Imagen Multimodal/métodos , Imagen Molecular/métodos
8.
FEBS Lett ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969618

RESUMEN

Dendritic cells (DCs) play a pivotal role in immune surveillance, acting as sentinels that coordinate immune responses within tissues. Although differences in the identity and functional states of DC subpopulations have been identified through multiparametric flow cytometry and single-cell RNA sequencing, these methods do not provide information about the spatial context in which the cells are located. This knowledge is crucial for understanding tissue organisation and cellular cross-talk. Recent developments in multiplex imaging techniques can now offer insights into this complex spatial and functional landscape. This review provides a concise overview of these imaging methodologies, emphasising their application in identifying DCs to delineate their tissue-specific functions and aiding newcomers in navigating this field.

9.
Cancers (Basel) ; 16(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39001353

RESUMEN

With the aim to advance the understanding of immune regulation in MCL and to identify targetable T-cell subsets, we set out to combine image analysis and spatial omic technology focused on both early and late differentiation stages of T cells. MCL patient tissue (n = 102) was explored using image analysis and GeoMx spatial omics profiling of 69 proteins and 1812 mRNAs. Tumor cells, T helper (TH) cells and cytotoxic (TC) cells of early (CD57-) and late (CD57+) differentiation stage were analyzed. An image analysis workflow was developed based on fine-tuned Cellpose models for cell segmentation and classification. TC and CD57+ subsets of T cells were enriched in tumor-rich compared to tumor-sparse regions. Tumor-sparse regions had a higher expression of several key immune suppressive proteins, tentatively controlling T-cell expansion in regions close to the tumor. We revealed that T cells in late differentiation stages (CD57+) are enriched among MCL infiltrating T cells and are predictive of an increased expression of immune suppressive markers. CD47, IDO1 and CTLA-4 were identified as potential targets for patients with T-cell-rich MCL TIME, while GITR might be a feasible target for MCL patients with sparse T-cell infiltration. In subgroups of patients with a high degree of CD57+ TC-cell infiltration, several immune checkpoint inhibitors, including TIGIT, PD-L1 and LAG3 were increased, emphasizing the immune-suppressive features of this highly differentiated T-cell subset not previously described in MCL.

10.
Cytometry A ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958502

RESUMEN

Imaging-based spatial transcriptomics techniques generate data in the form of spatial points belonging to different mRNA classes. A crucial part of analyzing the data involves the identification of regions with similar composition of mRNA classes. These biologically interesting regions can manifest at different spatial scales. For example, the composition of mRNA classes on a cellular scale corresponds to cell types, whereas compositions on a millimeter scale correspond to tissue-level structures. Traditional techniques for identifying such regions often rely on complementary data, such as pre-segmented cells, or lengthy optimization. This limits their applicability to tasks on a particular scale, restricting their capabilities in exploratory analysis. This article introduces "Points2Regions," a computational tool for identifying regions with similar mRNA compositions. The tool's novelty lies in its rapid feature extraction by rasterizing points (representing mRNAs) onto a pyramidal grid and its efficient clustering using a combination of hierarchical and k $$ k $$ -means clustering. This enables fast and efficient region discovery across multiple scales without relying on additional data, making it a valuable resource for exploratory analysis. Points2Regions has demonstrated performance similar to state-of-the-art methods on two simulated datasets, without relying on segmented cells, while being several times faster. Experiments on real-world datasets show that regions identified by Points2Regions are similar to those identified in other studies, confirming that Points2Regions can be used to extract biologically relevant regions. The tool is shared as a Python package integrated into TissUUmaps and a Napari plugin, offering interactive clustering and visualization, significantly enhancing user experience in data exploration.

11.
Cell Genom ; 4(6): 100565, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38781966

RESUMEN

Spatially resolved transcriptomics (SRT) technologies have revolutionized the study of tissue organization. We introduce a graph convolutional network with an attention and positive emphasis mechanism, termed BINARY, relying exclusively on binarized SRT data to accurately delineate spatial domains. BINARY outperforms existing methods across various SRT data types while using significantly less input information. Our study suggests that precise gene expression quantification may not always be essential, inspiring further exploration of the broader applications of spatially resolved binarized gene expression data.


Asunto(s)
Perfilación de la Expresión Génica , Humanos , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Algoritmos
12.
Cancer Cell ; 42(6): 1067-1085.e11, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38759655

RESUMEN

In acral melanoma (AM), progression from in situ (AMis) to invasive AM (iAM) leads to significantly reduced survival. However, evolutionary dynamics during this process remain elusive. Here, we report integrative molecular and spatial characterization of 147 AMs using genomics, bulk and single-cell transcriptomics, and spatial transcriptomics and proteomics. Vertical invasion from AMis to iAM displays an early and monoclonal seeding pattern. The subsequent regional expansion of iAM exhibits two distinct patterns, clonal expansion and subclonal diversification. Notably, molecular subtyping reveals an aggressive iAM subset featured with subclonal diversification, increased epithelial-mesenchymal transition (EMT), and spatial enrichment of APOE+/CD163+ macrophages. In vitro and ex vivo experiments further demonstrate that APOE+CD163+ macrophages promote tumor EMT via IGF1-IGF1R interaction. Adnexal involvement can predict AMis with higher invasive potential whereas APOE and CD163 serve as prognostic biomarkers for iAM. Altogether, our results provide implications for the early detection and treatment of AM.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Transición Epitelial-Mesenquimal , Melanoma , Invasividad Neoplásica , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/inmunología , Melanoma/patología , Transición Epitelial-Mesenquimal/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Apolipoproteínas E/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Femenino , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Análisis Espacial , Persona de Mediana Edad , Pronóstico , Progresión de la Enfermedad , Anciano , Receptores de Superficie Celular
13.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38701421

RESUMEN

Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Microambiente Tumoral , Análisis de la Célula Individual/métodos , Humanos , Neoplasias/patología , Aprendizaje Automático , Biología Computacional/métodos
14.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798592

RESUMEN

Cell population delineation and identification is an essential step in single-cell and spatial-omics studies. Spatial-omics technologies can simultaneously measure information from three complementary domains related to this task: expression levels of a panel of molecular biomarkers at single-cell resolution, relative positions of cells, and images of tissue sections, but existing computational methods for performing this task on single-cell spatial-omics datasets often relinquish information from one or more domains. The additional reliance on the availability of "atlas" training or reference datasets limits cell type discovery to well-defined but limited cell population labels, thus posing major challenges for using these methods in practice. Successful integration of all three domains presents an opportunity for uncovering cell populations that are functionally stratified by their spatial contexts at cellular and tissue levels: the key motivation for employing spatial-omics technologies in the first place. In this work, we introduce Cell Spatio- and Neighborhood-informed Annotation and Patterning (CellSNAP), a self-supervised computational method that learns a representation vector for each cell in tissue samples measured by spatial-omics technologies at the single-cell or finer resolution. The learned representation vector fuses information about the corresponding cell across all three aforementioned domains. By applying CellSNAP to datasets spanning both spatial proteomic and spatial transcriptomic modalities, and across different tissue types and disease settings, we show that CellSNAP markedly enhances de novo discovery of biologically relevant cell populations at fine granularity, beyond current approaches, by fully integrating cells' molecular profiles with cellular neighborhood and tissue image information.

15.
Cell ; 187(12): 3120-3140.e29, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714197

RESUMEN

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Proteómica , Análisis de la Célula Individual , Transcriptoma , Humanos , Análisis de la Célula Individual/métodos , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteómica/métodos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Hematopoyesis , Nicho de Células Madre , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología
16.
Front Genet ; 15: 1356611, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774283

RESUMEN

The current median survival for glioblastoma (GBM) patients is only about 16 months, with many patients succumbing to the disease in just a matter of months, making it the most common and aggressive primary brain cancer in adults. This poor outcome is, in part, due to the lack of new treatment options with only one FDA-approved treatment in the last decade. Advances in sequencing techniques and transcriptomic analyses have revealed a vast degree of heterogeneity in GBM, from inter-patient diversity to intra-tumoral cellular variability. These cutting-edge approaches are providing new molecular insights highlighting a critical role for the tumor microenvironment (TME) as a driver of cellular plasticity and phenotypic heterogeneity. With this expanded molecular toolbox, the influence of TME factors, including endogenous (e.g., oxygen and nutrient availability and interactions with non-malignant cells) and iatrogenically induced (e.g., post-therapeutic intervention) stimuli, on tumor cell states can be explored to a greater depth. There exists a critical need for interrogating the temporal and spatial aspects of patient tumors at a high, cell-level resolution to identify therapeutically targetable states, interactions and mechanisms. In this review, we discuss advancements in our understanding of spatiotemporal diversity in GBM with an emphasis on the influence of hypoxia and immune cell interactions on tumor cell heterogeneity. Additionally, we describe specific high-resolution spatially resolved methodologies and their potential to expand the impact of pre-clinical GBM studies. Finally, we highlight clinical attempts at targeting hypoxia- and immune-related mechanisms of malignancy and the potential therapeutic opportunities afforded by single-cell and spatial exploration of GBM patient specimens.

17.
Res Sq ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559236

RESUMEN

The utility of spatial omics in leveraging cellular interactions in normal and diseased states for precision medicine is hampered by a lack of strategies for matching disease states with spatial heterogeneity-guided cellular annotations. Here we use a spatial context-dependent approach that matches spatial pattern detection to cell annotation. Using this approach in existing datasets from ulcerative colitis patient colonic biopsies, we identified architectural complexities and associated difficult-to-detect rare cell types in ulcerative colitis germinal-center B cell follicles. Our approach deepens our understanding of health and disease pathogenesis, illustrates a strategy for automating nested architecture detection for highly multiplexed spatial biology data, and informs precision diagnosis and therapeutic strategies.

18.
Neurobiol Dis ; 195: 106491, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575092

RESUMEN

Focal cortical dysplasia (FCD) represents a group of diverse localized cortical lesions that are highly epileptogenic and occur due to abnormal brain development caused by genetic mutations, involving the mammalian target of rapamycin (mTOR). These somatic mutations lead to mosaicism in the affected brain, posing challenges to unravel the direct and indirect functional consequences of these mutations. To comprehensively characterize the impact of mTOR mutations on the brain, we employed here a multimodal approach in a preclinical mouse model of FCD type II (Rheb), focusing on spatial omics techniques to define the proteomic and lipidomic changes. Mass Spectrometry Imaging (MSI) combined with fluorescence imaging and label free proteomics, revealed insight into the brain's lipidome and proteome within the FCD type II affected region in the mouse model. MSI visualized disrupted neuronal migration and differential lipid distribution including a reduction in sulfatides in the FCD type II-affected region, which play a role in brain myelination. MSI-guided laser capture microdissection (LMD) was conducted on FCD type II and control regions, followed by label free proteomics, revealing changes in myelination pathways by oligodendrocytes. Surgical resections of FCD type IIb and postmortem human cortex were analyzed by bulk transcriptomics to unravel the interplay between genetic mutations and molecular changes in FCD type II. Our comparative analysis of protein pathways and enriched Gene Ontology pathways related to myelination in the FCD type II-affected mouse model and human FCD type IIb transcriptomics highlights the animal model's translational value. This dual approach, including mouse model proteomics and human transcriptomics strengthens our understanding of the functional consequences arising from somatic mutations in FCD type II, as well as the identification of pathways that may be used as therapeutic strategies in the future.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical de Grupo I , Proteómica , Animales , Humanos , Malformaciones del Desarrollo Cortical de Grupo I/genética , Malformaciones del Desarrollo Cortical de Grupo I/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/patología , Ratones , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Femenino , Modelos Animales de Enfermedad , Encéfalo/metabolismo , Encéfalo/patología , Proteoma/metabolismo , Displasia Cortical Focal
19.
Clin Chim Acta ; 559: 119686, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663471

RESUMEN

Colorectal cancer (CRC) is a leading cause of cancer-related deaths. Recent advancements in genomic technologies and analytical approaches have revolutionized CRC research, enabling precision medicine. This review highlights the integration of multi-omics, spatial omics, and artificial intelligence (AI) in advancing precision medicine for CRC. Multi-omics approaches have uncovered molecular mechanisms driving CRC progression, while spatial omics have provided insights into the spatial heterogeneity of gene expression in CRC tissues. AI techniques have been utilized to analyze complex datasets, identify new treatment targets, and enhance diagnosis and prognosis. Despite the tumor's heterogeneity and genetic and epigenetic complexity, the fusion of multi-omics, spatial omics, and AI shows the potential to overcome these challenges and advance precision medicine in CRC. The future lies in integrating these technologies to provide deeper insights and enable personalized therapies for CRC patients.


Asunto(s)
Inteligencia Artificial , Neoplasias Colorrectales , Genómica , Medicina de Precisión , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Humanos , Multiómica
20.
Cell ; 187(7): 1785-1800.e16, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552614

RESUMEN

To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.


Asunto(s)
Proteómica , Imagen Individual de Molécula , ADN , Microscopía Fluorescente/métodos , Neuronas , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA