Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517473

RESUMEN

The aim of the present study was to determine the optimal concentration of dietary protein required in transition diets for multiparous sows that enhance the farrowing process, colostrum production, and subsequent lactation performance. Forty-eight multiparous sows were allotted to one of six dietary treatments according to body weight (290 ±â€…3 kg) and parity (3.8 ±â€…0.2) from day 108 of gestation until 24 h after the onset of farrowing. The diets were isoenergetic and contained increasing concentrations of dietary protein (expressed as standardized ileal digestible [SID] Lys) and were supplied at a daily feed supply of 3.8 kg. On day 108 of gestation and days 2, 7, 14, 21, and 28 of lactation, body weight, and back fat thickness were recorded, and blood was sampled on day 108 of gestation, at the onset of farrowing, and days 3, 10, 17, and 24 of lactation from the sows for analysis of plasma metabolites. On day 115 of gestation, urine, and feces were collected for nitrogen (N) balance. The number of liveborn and stillborn piglets and time of birth were recorded and blood from every fourth piglet was sampled at birth for blood gas analysis. Piglets were weighed individually from birth until weaning, to estimate the colostrum and milk yield of the sows. Colostrum and milk samples were collected, and their compositions were determined. On days 3 and 28 of lactation, sows were injected with deuterium oxide to estimate body composition. The N utilization was maximized when the concentration of SID Lys in the transition diet was 6.06 g/kg (P < 0.01). When urinary concentrations of urea were expressed relative to creatinine, the relative concentration of urea remained low until a dietary concentration of 6.08 g SID Lys/kg, above which the relative concentration of urea increased (P < 0.01). Stillbirth rate increased linearly with increasing SID Lys concentration in the transition diet (P < 0.001), thus the concentration of SID Lys should be kept as low as possible without impairing sow performance excessively. A carry-over effect on milk yield was observed, showing that a dietary SID Lys concentration of 5.79 g/kg during transition optimized milk production at an average yield of 13.5 kg/d (P = 0.04). Increasing loss of body fat in lactation was observed with increasing SID Lys concentration in the transition diet (P = 0.03). In conclusion, the transition diet of multiparous sows should contain 5.79 g SID Lys/kg when fed 3.8 kg/d (13.0 MJ ME/kg), for a total SID Lys intake of 22 g/d.


In late gestation, the protein requirement of sows increases rapidly due to growth of the fetuses and mammary glands, whereas their energy requirement only is slightly increasing. Recent studies show that a feed supply of 4.1 kg/d in the last week of gestation is beneficial for the farrowing process and subsequent lactation performance. However, studies on feed supply cannot separate the effects of dietary fractions, so the sows' requirement for protein in the transition period remain unclear. The aim of the present study was to determine the dietary protein requirement of multiparous sows using a dose­response design with six diets containing increasing dietary protein (expressed as standardized ileal digestible [SID] Lys) from 3.99 to 8.57 g SID Lys/kg at a feeding level of 3.8 kg/d. Results indicate that the utilization of nitrogen (protein) during the transition period was maximized when the diet contained 6.06 g SID Lys/kg. Colostrum yield was unaffected by dietary treatment while dietary SID Lys in transition diet was found to have a carry-over effect on milk yield in the subsequent lactation period that was optimized at 5.79 g SID Lys/kg. As the concentration of SID Lys in the transition diet increased, stillbirth rate also increased, therefore, the concentration of SID Lys should be kept as low as possible without impairing sow performance excessively. In conclusion, the transition diet of multiparous sows should contain 5.79 g SID Lys/kg when fed 3.8 kg/d (13.0 MJ ME/kg), for a total SID Lys intake of 22 g/d.


Asunto(s)
Dieta , Lactancia , Embarazo , Animales , Porcinos , Femenino , Dieta/veterinaria , Peso Corporal , Proteínas en la Dieta , Urea , Alimentación Animal/análisis
2.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36971207

RESUMEN

Coproducts from the food and agricultural industries can potentially be used to replace concentrated high-value grain crops in diets for sows. The coproducts are typically high in fiber and with diverse composition. Energy digestibility and utilization are generally high in sows fed fiber-rich feedstuff, but nitrogen digestion and utilization may be compromised. The purpose of this study was to quantify the apparent total tract digestibility (ATTD) of nutrients and utilization of energy and nitrogen in empty nonlactating sows fed with six different fiber-rich coproducts (FRCP). Brewers spent grain (BSG), pea hull (PH), potato pulp (PP), pectin residue (PR), sugar beet pulp (SBP), and seed residue (SR) were mixed into a basal diet (BD) with as high an inclusion level as possible, or the BD was fed solely to eight empty sows in a Youden square incomplete cross-over design. The collection period consisted of a total collection period of 5 d, of which 2 d were in a respiration chamber. The sows had a gross energy (GE) intake between 28.5 and 42.3 MJ/d; greatest for the PH fed sows and lowest for the PP fed sows. The ATTD of dry matter, organic matter, GE, and N did not differ among the BD and the PH and SBP fed sows, while the ATTDs of all nutrients and energy were intermediate for PR and BSG lowest in SR fed sows (P < 0.01). The differences were caused by variation in digestible and metabolizable energy content of the FRCP ingredients, which was lowest for SR, intermediate for PR followed by BSG and greatest for SBP, PP, and PH (P < 0.001). Total heat production (HP) did not differ among treatments but the nonactivity related HP was highest in SR fed sows and lowest in PH and SBP fed sows (P < 0.05). Retention of energy was greatest following the PH and BD (7.42 and 2.19 MJ/d, respectively), intermediate for PP, SBP, and BSG fed sows (-0.22 to -0.69 MJ/d) and lowest for the PR and SR fed sows (-4.26 and -6.17 MJ/d, respectively; P < 0.001). From a sow feeding perspective, SBP and PH have the potential to partly replace high-value grain crops due to high ATTD of all nutrients and because sows can efficiently utilize energy and protein. In contrast, SR and PR show low ATTD of nutrients and energy, thereby compromising the nutritive value. PP and BSG also have the potential to be included in sow diets, but caution should be taken because of compromised N utilization and thereby increased environmental impact.


Coproducts from the food and agricultural industries have the potential to partly substitute grain in diets for empty nonlactating sows. Many coproducts are high in fiber and with diverse fiber composition. Some being easily fermented, while others are more resistant to fermentation giving rise to a large variation in the total tract digestibility and utilization of nutrients and energy. How well fiber-rich coproducts are digested and utilized is poorly understood in sows, but it is important to ensure an optimal energy and protein composition of the feed depending on the physiological stage of the sow. This study aimed to increase knowledge on the digestibility and utilization of six fiber-rich coproducts potentially to be included in the sow's feed. We found pea hulls and sugar beet pulp suitable as grain replacers due to their high total tract digestibility and no negative effects on energy and protein utilization. Potato pulp and brewers spent grain were also well suited. However, caution should be taken in balancing diets because of increased fecal and urine nitrogen output, which will increase environmental impact. Seed and pectin residues primarily serve as gut fill.


Asunto(s)
Beta vulgaris , Fibras de la Dieta , Animales , Femenino , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Beta vulgaris/metabolismo , Productos Agrícolas/metabolismo , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Digestión , Grano Comestible/metabolismo , Nitrógeno/metabolismo , Nutrientes/metabolismo , Pectinas , Porcinos , Verduras/metabolismo , Estudios Cruzados
3.
Anim Nutr ; 12: 96-107, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36632620

RESUMEN

Oxidative stress is a potentially critical factor that affects productive performance in gestating and lactating sows. Polyphenols are a large class of plant secondary metabolites that possess robust antioxidant capacity. All polyphenols are structurally characterized by aromatic rings with multiple hydrogen hydroxyl groups; those make polyphenols perfect hydrogen atoms and electron donors to neutralize free radicals and other reactive oxygen species. In the past decade, increasing attention has been paid to polyphenols as functional feed additives for sows. Polyphenols have been found to alleviate inflammation and oxidative stress in sows, boost their reproductivity, and promote offspring growth and development. In this review, we provided a systematical summary of the latest research advances in plant-derived polyphenols in sow nutrition, and mainly focused on the effects of polyphenols on the (1) antioxidant and immune functions of sows, (2) placental functions and the growth and development of fetal piglets, (3) mammary gland functions and the growth and development of suckling piglets, and (4) the long-term growth and development of progeny pigs. The output of this review provides an important foundation, from more than 8,000 identified plant phenols, to screen potential polyphenols (or polyphenol-enriched plants) as functional feed additives suitable for gestating and lactating sows.

4.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36637127

RESUMEN

The digestibility of energy and nutrients in fiber-rich diets depends greatly on the fiber source but most data are from studies with growing pigs. The purpose of this study was to investigate the apparent total tract digestibility (ATTD) of nutrients in different fiber-rich diets and to quantify whole-body metabolism and utilization of energy and nitrogen (N) in gestating sows. Four fiber-rich diets based on sugar beet pulp (SBP), soy hulls (SH), palm kernel expellers (PKE), or a mixed fiber (MF) were formulated, with an average daily intake of total fiber (TF) of 471, 507, 651, and 437 g/d, respectively. A total of 48 multiparous sows were stratified by body weight at mating (day 0) and assigned to one of the four diets throughout gestation. Body weight and backfat were measured, and body pools of fat and protein were estimated using the deuterium oxide dilution technique at days 0, 30, and 60. On days 30 and 60, urine and fecal grab samples were obtained. On days 15 and 45, heart rate was measured to estimate total heat production. The ATTD of nutrients differed across treatments (P < 0.001), while in vivo organic matter digestibility deviated with up to ±3.3% units from in vitro enzyme digestibility of organic matter. The ATTD of energy was highly negatively correlated with intake of lignin (P < 0.001), while ATTD of N was highest (negatively) correlated (P < 0.001) with intake of insoluble non-starch polysaccharides (NSP). The ATTD of all nutrients except NSP was lowest in PKE-fed sows and highest, except for N, in sows fed the SBP diet. The ATTD of N was highest in the MF-fed sows and ATTD of NSP was lowest in the MF-fed sows. Sows lost most energy as heat (53% to 72% of gross energy intake), followed by energy in feces (15% to 17%), urine (3% to 4%), and methane (0.5% to 0.9%). Energy for maintenance accounted for the majority of the heat production and the total energy retention was lowest and highest in the SBP- and PKE-fed sows, with a retention of 3.3 and 13.3 MJ/d, respectively (P < 0.001). Sows lost most N through urine, the lowest and highest N loss (relative to intake) was observed in SH- and SBP-fed sows (50% to 63%, respectively), while 14% to 26% was retained as body protein. In conclusion, the fiber-rich diets were utilized efficiently by gestating sows with respect to energy with ATTD values above 82% in all four fiber-rich diets, whereas the high TF content in the diets compromised the N utilization in gestating sows.


How much energy and nutrients a pig can use from the feed depends greatly on the feed ingredients, feed level, and the physiological stage of the animal. Fibers are of great interest because they can improve health and welfare of pigs and co-products from the food and agriculture industries are among the most interesting. The ability to degrade different fiber sources and utilize energy and nutrients are poorly understood in gestating sows, but highly important when formulating the feed composition. The hypothesis was that sugar beet pulp was superior to the other three fiber-rich sources investigated: soy hulls, palm kernel expellers, or a mix of fibers, with respect to intake and utilization of energy and nutrients. We did not find sugar beet pulp to be particularly superior with respect to energy (fermentation or utilization), whereas utilization of nitrogen was highest for sugar beet pulp but compromised in the three other diets depending on fiber sources.


Asunto(s)
Digestión , Nitrógeno , Porcinos , Animales , Femenino , Digestión/fisiología , Nitrógeno/metabolismo , Nutrientes/metabolismo , Dieta/veterinaria , Ingestión de Energía , Alimentación Animal/análisis , Fibras de la Dieta/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales
5.
Res Vet Sci ; 148: 42-51, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35660544

RESUMEN

Early gestation may be the best period for sows to recover body reserve losses from previous lactation. The aim of this study was to investigate the effect of different levels of restricted feeding in early gestation on the body status, productive and reproductive performance, and hormonal-metabolic status of primiparous and multiparous sows. A total of 130 sows were randomly assigned to one of three feeding levels: Treatment I, which sows were fed at the level commonly used from day 3 to 28 of gestation (2.5 kg·d-1 of a diet with 2.18 Mcal NE·kg-1 and 13.72 g CP·kg-1), and Treatments II and III, where feed was increased by 25% and 50%, respectively. Sow body status, litter size and weight, early mortalities, reproductive rates, weaning-to-estrus interval, and hormones linked to metabolism were recorded. The highest weight gain, body condition score, and backfat thickness were found in sows fed Treatment III compared to those fed the usual feeding level (Treatment I). No differences among treatment groups were found in litter size or litter weight, although a tendency for more live born piglets and fewer stillbirths was found in sows fed Treatment III. In contrast, litters from sows fed at higher feeding levels had a higher mortality at 72 h compared to those fed at the lowest feeding level (I), which was partly linked to a higher percentage of piglets culled at birth and piglets weighing less than 800 g. There were no differences in conception and farrowing rates, leptin, progesterone, insulin, or cortisol among treatment groups applied in early gestation. In conclusion, increasing the feeding level in sows during early gestation to improve their short-term productive and reproductive performance remains controversial. Further studies are needed to focus on how the restricted feeding level applied could affect the viability and proportion of low-weight piglets.


Asunto(s)
Alimentación Animal , Dieta/veterinaria , Preñez/fisiología , Reproducción , Porcinos/fisiología , Alimentación Animal/análisis , Animales , Femenino , Lactancia , Tamaño de la Camada , Embarazo , Porcinos/metabolismo , Destete , Aumento de Peso
6.
Br J Nutr ; 128(3): 377-388, 2022 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-34486963

RESUMEN

Phosphorus requirements of reproducing sows were estimated using 24-h urinary P excretion. Thirty-six multiparous sows were fed one of six maize-soybean meal-based diets with total P ranging from 0·40 to 0·80 % in 0·08 % increments with a constant Ca:total P ratio (1·25:1). Diets were fed from day 7·5 ± 1 after breeding until the end of lactation (day 26 ± 1). Urine samples were collected in mid and late gestation (days 77·1 ± 2 and 112·4 ± 1) and early and late lactation (days 4·5 ± 1 and 18·2 ± 1). Phosphorus requirements were estimated using linear and nonlinear regression models. Based on a single 24-h urinary P excretion, estimated daily dietary total P requirements in mid and late gestation were 10·3 g (6·0 g standardised total tract digestible P, STTD P), and estimates for early and late lactation were 31·1 g (16·6 g STTD P) and 40·3 g (22·1 g STTD P), respectively. Plasma P and Ca concentrations were maintained within normal ranges at the estimated levels of P requirements. No differences among treatments were observed for plasma parathyroid hormone (P ≥ 0·06) and bone formation marker (P ≥ 0·16). In lactation, bone resorption marker decreased (P ≤ 0·001) as sows consumed more P. Among the analysed variables, urinary P was the most sensitive response to changes in dietary P intake. Urinary P excretion offers a practical method to estimate P requirements in sows. Our recommended daily total P requirements are 10·3 g for gestation and 35·7 g for lactation.


Asunto(s)
Fósforo , Fitomejoramiento , Porcinos , Embarazo , Animales , Femenino , Lactancia , Dieta/veterinaria , Paridad , Alimentación Animal/análisis
7.
J Anim Sci ; 99(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34057466

RESUMEN

The aim of the present study was to evaluate the effect of trace mineral nutrition on sow performance, mineral content, and intestinal gene expression of neonate piglets when inorganic mineral sources (ITM) were partially replaced by their organic mineral (OTM) counterparts. At 35 d postmating, under commercial conditions, a total of 240 hyperprolific multiparous sows were allocated into three experimental diets: 1) ITM: with Zn, Cu, and Mn at 80, 15, and 60 mg/kg, respectively; 2) partial replacement trace mineral source (Replace): with a 30 % replacement of ITM by OTM, resulting in ITM + OTM supplementation of Zn (56 + 24 mg/kg), Cu (10.5 + 4.5 mg/kg), and Mn (42 + 18 mg/kg); and 3) Reduce and replace mineral source (R&R): reducing a 50% of the ITM source of Zn (40 + 24 mg/kg), Cu (7.5 + 4.5 mg/kg), and Mn (30 + 18 mg/kg). At farrowing, 40 piglets were selected, based on birth weight (light: <800 g, and average: >1,200 g), for sampling. Since the present study aimed to reflect results under commercial conditions, it was difficult to get an equal parity number between the experimental diets. Overall, no differences between experimental diets on sow reproductive performance were observed. Light piglets had a lower mineral content (P < 0.05) and a downregulation of several genes (P < 0.10) involved in physiological functions compared with their average littermates. Neonate piglets born from Replace sows had an upregulation of genes involved in functions like immunity and gut barrier, compared with those born from ITM sows (P < 0.10), particularly in light piglets. In conclusion, the partial replacement of ITM by their OTM counterparts represents an alternative to the totally inorganic supplementation with improvements on neonate piglet gene expression, particularly in the smallest piglets of the litter. The lower trace mineral storage together with the greater downregulation of gut health genes exposed the immaturity and vulnerability of small piglets.


Asunto(s)
Oligoelementos , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Desarrollo Fetal , Embarazo , Porcinos
8.
J Anim Sci ; 99(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33550387

RESUMEN

This study aimed to determine the optimal supply of lactation feed during the transition period to minimize farrowing duration (FD) and maximize colostrum yield (CY) and quality with the overall aim of reducing piglet mortality. A total of 48 sows were stratified for body weight and assigned to six levels of feed supply (1.8, 2.4, 3.1, 3.7, 4.3, and 5.0 kg/d) from day 108 of gestation until 24 h after the onset of farrowing. The number of total born, live-born, and stillborn piglets; birth time and birth weight of each piglet; and frequency of farrowing assistance (FA) was recorded, and blood samples were obtained from newborn piglets at birth. Live-born piglets were further weighed at 12 and 24 h after birth to record weight gain, which in turn was used to estimate intake and yield of colostrum. Colostrum samples were collected at 0, 12, 24, and 36 h after the onset of farrowing. FD was shortest (4.2 h) at intermediate (3.7 kg/d), longest (7.1 to 7.6 h) at low (1.8 and 2.4 kg/d), and intermediate (5.6 to 5.7 h) at high (4.3 and 5.0 kg/d) feed intake (P = 0.004; mean comparison). FA was lowest (0.7% to 0.8%) at intermediate feed intake (3.7 and 4.3 kg/d) and substantially elevated (4.3% to 4.7%) at both lower and higher feed intake (P = 0.01; mean comparison). The cubic contrast revealed 4.1 kg/d as the optimal feed intake to achieve the shortest FD and to minimize FA. Newborn piglets from second-parity sows were less vital than piglets from gilts as evaluated by blood biochemical variables immediately after birth. CY was greatest at 3.1 kg/d (P = 0.04), whereas the cubic contrast revealed 3.0 kg/d as the optimal feed intake to maximize CY. Concentrations of colostral components were affected by the diet, parity, and their interaction except for lactose concentrations. In conclusion, the study demonstrated the importance of proper feed level during the transition period on sow productivity. Moreover, this study estimated 4.1 and 3.0 kg/d as the optimal feed intake during the transition period to improve farrowing characteristic and CY, respectively, and these two feed intake levels supplied daily 38.8 MJ metabolizable energy (ME) and 23.9 g standardized ileal digestible (SID) lysine (3.0 kg/d) or 53.0 MJ ME and 32.7 g SID lysine (4.1 kg/d). The discrepancy of optimal feed intake for optimal farrowing and colostrum performance suggests that it may be advantageous to lower dietary lysine concentration in the diet fed prepartum.


Asunto(s)
Alimentación Animal , Calostro , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Ingestión de Alimentos , Femenino , Lactancia , Embarazo , Porcinos
9.
Vet World ; 13(7): 1245-1250, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32848297

RESUMEN

AIM: Nutrition plays a key role in the production of pigs, especially in pregnant sows, where modifications in nutritional requirements can affect their productive performance. The aim of this study was to evaluate nutritional supplementation with soybean expeller in sows during the last third of the gestation period and its effect on litter birth weight. MATERIALS AND METHODS: A quasi-experimental study was conducted on a farrow-to-finish farm, where 192 sows were equally assigned to treatment and control groups. Several variables were recorded at both the sow and piglet level. The treatment group consisted of piglets from 95 sows supplemented with soybean expeller during the final phase of gestation (20 days), and the comparison group consisted of piglets from 97 sows fed only with a commercial balanced ration (control group). RESULTS: Soybean expeller supplementation increased individual piglet weight by 190-270 g, and the increased number of live piglets could decrease the weight of each piglet. Moreover, the number of piglets weighing <900 g decreased by 10% as compared to the control group, indicating that supplementation could improve pre-weaning mortality. CONCLUSION: Our results suggest that soybean expeller supplementation in sows during the last third of the gestation period could improve production performance, especially on organic farms.

10.
Transl Anim Sci ; 4(1): 34-48, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32704964

RESUMEN

Three experiments were carried out to study whether a gestation diet, a simple transition diet, or a lactation diet is the best choice in late gestation and when sows preferably should be transferred to a high crude protein (CP) lactation diet. In experiment 1, 35 sows were fed either a gestation diet (12.1% CP), a lactation diet (15.9% CP), or a 50/50 mix (simple transition diet; 14.0% CP) from 6 d before parturition until parturition, to study the impact on farrowing and colostrum performance. In experiment 2, 90 sows were studied from 6 d before parturition until weaning at day 24 and they were fed one of five strategies: a gestation diet until day 3 or day 10 of lactation (strategy 1 and 2) and then lactation diet; a simple transition diet until day 3 or day 10 (strategy 3 and 4) and then lactation diet; or a lactation diet throughout the study (strategy 5). In experiment 3, 124 sows were fed strategy 1 or 5. Sows were weighed and back fat (BF) scanned when entering the farrowing unit and at day 2, 10, 17, and 24. Piglets were weighed at birth and after 24 h, and colostrum production was studied (experiment 1). Litter weight at day 2, 10, 17, and 24 was recorded, milk and blood samples were collected weekly and sow fat and protein mobilization, and balances of energy, N, and Lys were calculated from day 3 to 10 of lactation (experiment 2). Total- and live born piglets, and frequencies of stillbirth and piglet diarrhea were recorded (experiment 3). Feeding sows a gestation diet, a simple transition diet, or a lactation diet showed no evidence of effects on colostrum production or farrowing process (experiments 1 and 3) or lactation performance (experiments 2 and 3). Compared to previous studies, sows had a poor milk yield. Plasma urea was elevated (P < 0.001) indicating CP oversupply prior to parturition in sows fed the lactation diet as compared with the two other diets. According to calculated balances, all dietary strategies supplied insufficient amounts of N and Lys from day 3 to 10, indicating that the best choice is to feed sows with a high CP lactation diet from parturition and onwards. Primiparous sows had a higher plasma insulin concentration (P < 0.01), lower colostrum yield (P < 0.01), and higher frequency of piglet diarrhea (P < 0.001) than multiparous sows. In conclusion, in our conditions (high CP in gestation diet; poor milk yield; restricted feeding in early lactation), sow performance was not compromised by the dietary strategies, but results indicate that primiparous and multiparous sows should be fed differently.

11.
J Anim Sci ; 97(8): 3472-3486, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31251796

RESUMEN

The objectives of the study were 1) to quantify dietary N utilized for milk N and N loss in urine and feces, in sows fed increasing dietary CP with a constant amount of Lys, Met, Thr, and Trp to meet their standardized ileal digestible (SID) requirement and 2) to determine the optimal dietary CP concentration based on dietary N utilization for milk production. Seventy-two sows were fed 1 of 6 dietary treatments, formulated to increase the SID CP as followed: 11.8, 12.8, 13.4, 14.0, 14.7, and 15.6% and formulated to be isocaloric (9.8 MJ NE/kg). Diets were fed from day 2 after parturition until weaning at day 28 (± 3 d). Litters were equalized to 14 piglets and weighed within 48 h following parturition. Sows were weighed and back fat scanned, at day 18 (± 3 d) and day 28 (weaning; ± 3 d). Litter weight was recorded at day 11, 18 (± 3 d), and 28 (± 3 d). Nitrogen balances were conducted on approximately day 4, 11, and 18 (± 3 d). Daily milk yield was estimated from recorded litter gain and litter size. To calculate sows mobilization of fat and protein, body pools of fat and protein were estimated by D2O (deuterated water) enrichment on day 4 and 18 (± 3 d). No linear, quadratic, or cubic effects of increasing dietary CP was observed for sows total feed intake, sow BW, body pools of protein and fat, protein and fat mobilization, total milk yield, and piglet performance. The protein content in milk increased linearly with increasing dietary CP in week 1 (P < 0.05), week 2 (P < 0.05), and week 3 (P < 0.001). Urine production did not differ among treatments and N output in urine increased linearly with increasing dietary CP concentration in week 1 (P = 0.05), week 2 (P < 0.001), and week 3 (P < 0.001). Urine N excretion relative to N intake increased linearly with increasing dietary CP (P < 0.001). Milk N utilization relative to N intake decreased linearly from 77.8% to 63.1% from treatment 1 through 6 (P < 0.001). Corrected milk N utilization decreased from 68.6% to 64.2% from treatment 1 through 6 (P < 0.05). In conclusion, a low dietary CP concentration for lactating sows with supplemented crystalline AA improved the efficiency of dietary N utilization and reduced the N output in urine without affecting lactation performance.


Asunto(s)
Aminoácidos/farmacología , Proteínas en la Dieta/metabolismo , Suplementos Dietéticos , Leche/metabolismo , Nitrógeno/metabolismo , Porcinos/fisiología , Alimentación Animal/análisis , Animales , Peso Corporal/efectos de los fármacos , Dieta/veterinaria , Ingestión de Alimentos , Heces/química , Femenino , Íleon/metabolismo , Lactancia , Tamaño de la Camada/efectos de los fármacos , Masculino , Leche/química , Nitrógeno/orina , Embarazo , Distribución Aleatoria , Destete
12.
J Zhejiang Univ Sci B ; 16(6): 417-35, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26055904

RESUMEN

Accompanying the beneficial improvement in litter size from genetic selection for high-prolificacy sows, within-litter variation in birth weight has increased with detrimental effects on post-natal growth and survival due to an increase in the proportion of piglets with low birth-weight. Causes of within-litter variation in birth weight include breed characteristics that affect uterine space, ovulation rate, degree of maturation of oocytes, duration of time required for ovulation, interval between ovulation and fertilization, uterine capacity for implantation and placentation, size and efficiency of placental transport of nutrients, communication between conceptus/fetus and maternal systems, as well as nutritional status and environmental influences during gestation. Because these factors contribute to within-litter variation in birth weight, nutritional status of the sow to improve fetal-placental development must focus on the following three important stages in the reproductive cycle: pre-mating or weaning to estrus, early gestation and late gestation. The goal is to increase the homogeneity of development of oocytes and conceptuses, decrease variations in conceptus development during implantation and placentation, and improve birth weights of newborn piglets. Though some progress has been made in nutritional regulation of within-litter variation in the birth weight of piglets, additional studies, with a focus on and insights into molecular mechanisms of reproductive physiology from the aspects of maternal growth and offspring development, as well as their regulation by nutrients provided to the sow, are urgently needed.


Asunto(s)
Peso al Nacer/fisiología , Tamaño de la Camada/fisiología , Estado Nutricional/fisiología , Preñez/fisiología , Fenómenos Fisiologicos de la Nutrición Prenatal/fisiología , Porcinos/fisiología , Animales , Bovinos , Femenino , Masculino , Embarazo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA