Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioessays ; 45(9): e2300078, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329195

RESUMEN

The type III secretion system (T3SS) is a specialized nanomachine that enables bacteria to secrete proteins in a specific order and directly deliver a specific set of them, collectively known as effectors, into eukaryotic organisms. The core structure of the T3SS is a syringe-like apparatus composed of multiple building blocks, including both membrane-associated and soluble proteins. The cytosolic components organize together in a chamber-like structure known as the sorting platform (SP), responsible for recruiting, sorting, and initiating the substrates destined to engage this secretion pathway. In this article, we provide an overview of recent findings on the SP's structure and function, with a particular focus on its assembly pathway. Furthermore, we discuss the molecular mechanisms behind the recruitment and hierarchical sorting of substrates by this cytosolic complex. Overall, the T3SS is a highly specialized and complex system that requires precise coordination to function properly. A deeper understanding of how the SP orchestrates T3S could enhance our comprehension of this complex nanomachine, which is central to the host-pathogen interface, and could aid in the development of novel strategies to fight bacterial infections.


Asunto(s)
Proteínas Bacterianas , Vías Secretoras , Proteínas Bacterianas/metabolismo , Transporte de Proteínas , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/metabolismo , Citosol/metabolismo
2.
Methods Appl Fluoresc ; 11(1)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36541558

RESUMEN

The resolution achievable with the established super-resolution fluorescence nanoscopy methods, such as STORM or STED, is in general not sufficient to resolve protein complexes or even individual proteins. Recently, minimal photon flux (MINFLUX) nanoscopy has been introduced that combines the strengths of STED and STORM nanoscopy and can achieve a localization precision of less than 5 nm. We established a generally applicable workflow for MINFLUX imaging and applied it for the first time to a bacterial molecular machinein situ, i.e., the injectisome of the enteropathogenY. enterocolitica. We demonstrate with a pore protein of the injectisome that MINFLUX can achieve a resolution down to the single molecule levelin situ. By imaging a sorting platform protein using 3D-MINFLUX, insights into the precise localization and distribution of an injectisome component in a bacterial cell could be accomplished. MINFLUX nanoscopy has the potential to revolutionize super-resolution imaging of dynamic molecular processes in bacteria and eukaryotes.


Asunto(s)
Bacterias , Microscopía Fluorescente/métodos
3.
Front Plant Sci ; 13: 955776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968103

RESUMEN

The Gram-negative plant-pathogenic bacterium Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato plants. Pathogenicity of X. euvesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells and is associated with an extracellular pilus and a translocon in the plant plasma membrane. Effector protein translocation is activated by the cytoplasmic T3S chaperone HpaB which presumably targets effectors to the T3S system. We previously reported that HpaB is controlled by the translocated regulator HpaA which binds to and inactivates HpaB during the assembly of the T3S system. In the present study, we show that translocation of HpaA depends on the T3S substrate specificity switch protein HpaC and likely occurs after pilus and translocon assembly. Translocation of HpaA requires the presence of a translocation motif (TrM) in the N-terminal region. The TrM consists of an arginine-and proline-rich amino acid sequence and is also essential for the in vivo function of HpaA. Mutation of the TrM allowed the translocation of HpaA in hpaB mutant strains but not in the wild-type strain, suggesting that the recognition of the TrM depends on HpaB. Strikingly, the contribution of HpaB to the TrM-dependent translocation of HpaA was independent of the presence of the C-terminal HpaB-binding site in HpaA. We propose that HpaB generates a recognition site for the TrM at the T3S system and thus restricts the access to the secretion channel to effector proteins. Possible docking sites for HpaA at the T3S system were identified by in vivo and in vitro interaction studies and include the ATPase HrcN and components of the predicted cytoplasmic sorting platform of the T3S system. Notably, the TrM interfered with the efficient interaction of HpaA with several T3S system components, suggesting that it prevents premature binding of HpaA. Taken together, our data highlight a yet unknown contribution of the TrM and HpaB to substrate recognition and suggest that the TrM increases the binding specificity between HpaA and T3S system components.

4.
Front Microbiol ; 12: 752733, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721356

RESUMEN

Pathogenicity of the Gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. T3S systems are conserved in plant- and animal-pathogenic bacteria and consist of at least nine structural core components, which are designated Sct (secretion and cellular translocation) in animal-pathogenic bacteria. Sct proteins are involved in the assembly of the membrane-spanning secretion apparatus which is associated with an extracellular needle structure and a cytoplasmic sorting platform. Components of the sorting platform include the ATPase SctN, its regulator SctL, and pod-like structures at the periphery of the sorting platform consisting of SctQ proteins. Members of the SctQ family form a complex with the C-terminal protein domain, SctQC, which is translated as separate protein and likely acts either as a structural component of the sorting platform or as a chaperone for SctQ. The sorting platform has been intensively studied in animal-pathogenic bacteria but has not yet been visualized in plant pathogens. We previously showed that the SctQ homolog HrcQ from X. campestris pv. vesicatoria assembles into complexes which associate with the T3S system and interact with components of the ATPase complex. Here, we report the presence of an internal alternative translation start site in hrcQ leading to the separate synthesis of the C-terminal protein region (HrcQC). The analysis of genomic hrcQ mutants showed that HrcQC is essential for pathogenicity and T3S. Increased expression levels of hrcQ or the T3S genes, however, compensated the lack of HrcQC. Interaction studies and protein analyses suggest that HrcQC forms a complex with HrcQ and promotes HrcQ stability. Furthermore, HrcQC colocalizes with HrcQ as was shown by fluorescence microscopy, suggesting that it is part of the predicted cytoplasmic sorting platform. In agreement with this finding, HrcQC interacts with the inner membrane ring protein HrcD and the SctK-like linker protein HrpB4 which contributes to the docking of the HrcQ complex to the membrane-spanning T3S apparatus. Taken together, our data suggest that HrcQC acts as a chaperone for HrcQ and as a structural component of the predicted sorting platform.

5.
Front Cell Infect Microbiol ; 11: 682635, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150677

RESUMEN

Shigella flexneri, causative agent of bacillary dysentery (shigellosis), uses a type III secretion system (T3SS) as its primary virulence factor. The T3SS injectisome delivers effector proteins into host cells to promote entry and create an important intracellular niche. The injectisome's cytoplasmic sorting platform (SP) is a critical assembly that contributes to substrate selection and energizing secretion. The SP consists of oligomeric Spa33 "pods" that associate with the basal body via MxiK and connect to the Spa47 ATPase via MxiN. The pods contain heterotrimers of Spa33 with one full-length copy associated with two copies of a C-terminal domain (Spa33C). The structure of Spa33C is known, but the precise makeup and structure of the pods in situ remains elusive. We show here that recombinant wild-type Spa33 can be prepared as a heterotrimer that forms distinct stable complexes with MxiK and MxiN. In two-hybrid analyses, association of the Spa33 complex with these proteins occurs via the full-length Spa33 component. Furthermore, these complexes each have distinct biophysical properties. Based on these properties, new high-resolution cryo-electron tomography data and architectural similarities between the Spa33 and flagellar FliM-FliN complexes, we provide a preliminary model of the Spa33 heterotrimers within the SP pods. From these findings and evolving models of SP interfaces and dynamics in the Yersinia and Salmonella T3SS, we suggest a model for SP function in which two distinct complexes come together within the context of the SP to contribute to form the complete pod structures during the recruitment of T3SS secretion substrates.


Asunto(s)
Shigella , Sistemas de Secreción Tipo III , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte de Proteínas , Shigella/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Sistemas de Secreción Tipo III/genética
6.
Cell Microbiol ; 23(6): e13327, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33733571

RESUMEN

The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper and tomato plants. Pathogenicity of X. campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into plant cells. At least nine membrane-associated and cytoplasmic components of the secretion apparatus are homologous to corresponding Sct (secretion and cellular translocation) proteins from animal pathogens, suggesting a similar structural organisation of T3S systems in different bacterial species. T3S in X. campestris pv. vesicatoria also depends on non-conserved proteins with yet unknown function including the essential pathogenicity factor HrpB4. Here, we show that HrpB4 localises to the cytoplasm and the bacterial membranes and interacts with the cytoplasmic domain of the inner membrane (IM) ring component HrcD and the cytoplasmic HrcQ protein. The analysis of HrpB4 deletion derivatives revealed that deletion of the N- or C-terminal protein region affects the interaction of HrpB4 with HrcQ and HrcD as well as its contribution to pathogenicity. HrcQ is a component of the predicted sorting platform, which was identified in animal pathogens as a dynamic heterooligomeric protein complex and associates with the IM ring via SctK proteins. HrcQ complex formation was previously shown by fluorescent microscopy analysis and depends on the presence of the T3S system. In the present study, we provide experimental evidence that the absence of HrpB4 severely affects the docking of HrcQ complexes to the T3S system but does not significantly interfere with HrcQ complex formation in the bacterial cytoplasm. Taken together, our data suggest that HrpB4 links the predicted cytoplasmic sorting platform to the IM rings of the T3S system.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Sistemas de Secreción Tipo III/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Citoplasma/metabolismo , Unión Proteica , Transporte de Proteínas , Sistemas de Secreción Tipo III/genética , Xanthomonas campestris/patogenicidad
7.
Microorganisms ; 9(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671545

RESUMEN

Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.

8.
J Mol Biol ; 432(24): 166693, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33122003

RESUMEN

Many Gram-negative bacterial pathogens use type III secretion systems (T3SS) to inject proteins into eukaryotic cells to subvert normal cellular functions. The T3SS apparatus (injectisome) shares a common architecture in all systems studied thus far, comprising three major components - the cytoplasmic sorting platform, envelope-spanning basal body and external needle with tip complex. The sorting platform consists of an ATPase (SctN) connected to "pods" (SctQ) having six-fold symmetry via radial spokes (SctL). These pods interface with the 24-fold symmetric SctD inner membrane ring (IR) via an adaptor protein (SctK). Here we report the first high-resolution structure of a SctK protein family member, PscK from Pseudomonas aeruginosa, as well as the structure of its interacting partner, the cytoplasmic domain of PscD (SctD). The cytoplasmic domain of PscD forms a forkhead-associated (FHA) fold, like that of its homologues from other T3SS. PscK, on the other hand, forms a helix-rich structure that does not resemble any known protein fold. Based on these structural findings, we present the first model for an interaction between proteins from the sorting platform and the IR. We also test the importance of the PscD residues predicted to mediate this electrostatic interaction using a two-hybrid analysis. The functional need for these residues in vivo was then confirmed by monitoring secretion of the effector ExoU. These structures will contribute to the development of atomic-resolution models of the entire sorting platform and to our understanding of the mechanistic interface between the sorting platform and the basal body of the injectisome.


Asunto(s)
Adenosina Trifosfatasas/ultraestructura , Proteínas Bacterianas/ultraestructura , Pseudomonas aeruginosa/ultraestructura , Sistemas de Secreción Tipo III/ultraestructura , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cuerpos Basales/enzimología , Cuerpos Basales/ultraestructura , Citoplasma/química , Citoplasma/genética , Citoplasma/ultraestructura , Citosol/ultraestructura , Transporte de Proteínas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/genética
9.
Curr Top Microbiol Immunol ; 427: 133-142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31183608

RESUMEN

A central feature of type III protein secretion machines is their ability to engage their substrates in a hierarchical and organized fashion. The hierarchy in the secretion process is first observed during the assembly of the type III secretion injectisome when the secretion machine exclusively engages proteins required for building the needle complex substructure (early substrates). After completion of the needle complex, the secretion system loads the proteins that will form the needle tip substructure as well as the protein translocases (middle substrates), which upon contact with host cells will mediate the passage of effectors (late substrates) through the host plasma membrane. The hierarchy of the secretion process is orchestrated by a very large cytoplasmic complex known as the sorting platform, which selects and initiates the substrates into the secretion pathway.


Asunto(s)
Sistemas de Secreción Tipo III , Proteínas Bacterianas , Proteínas Portadoras , Citosol , Transporte de Proteínas , Sistemas de Secreción Tipo III/metabolismo
10.
J Biol Chem ; 294(50): 19184-19196, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31699894

RESUMEN

Many Gram-negative bacteria use type III secretion systems (T3SSs) to inject virulence effector proteins into eukaryotic cells. The T3SS apparatus (T3SA) is structurally conserved among diverse bacterial pathogens and consists of a cytoplasmic sorting platform, an envelope-spanning basal body, and an extracellular needle with tip complex. The sorting platform is essential for effector recognition and powering secretion. Studies using bacterial "minicells" have revealed an unprecedented level of structural detail of the sorting platform; however, many of the structure-function relationships within this complex remain enigmatic. Here, we report on improved cryo-electron tomographic approaches to enhance the resolution of the Shigella T3SA sorting platform (at ≤2 nm resolution) done in concert with biochemical and genetic methods to define the sorting platform interactome and interactions with the T3SA inner membrane ring (IR). We observed that the sorting platform consists of "pods" with 6-fold symmetry that interact with the Spa47 ATPase via radial extensions comprising MxiN. Most importantly, MxiK maintained an interaction with the IR via specific interactions with the cytoplasmic domain of the IR protein MxiG (MxiGC), which is a noncanonical forkhead-associated domain, and MxiK has an elongated structure that interacts with the IR via MxiGC T4 lysozyme-mediated insertional mutagenesis of MxiK revealed its orientation within the sorting platform and enabled disruption of interactions with its binding partners, which abolished sorting platform assembly. Finally, a comparison with the homologous interactions in the Salmonella T3SS sorting platform revealed clear differences in their IR-sorting platform interfaces that have possible mechanistic implications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Shigella flexneri/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación
11.
mBio ; 9(3)2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921672

RESUMEN

Numerous Gram-negative bacterial pathogens utilize type III secretion systems (T3SSs) to inject tens of effector proteins directly into the cytosol of host cells. Through interactions with cognate chaperones, type III effectors are defined and recruited to the sorting platform, a cytoplasmic component of these membrane-embedded nanomachines. However, notably, a comprehensive review of the literature reveals that the secretion of most type III effectors has not yet been linked to a chaperone, raising questions regarding the existence of unknown chaperones as well as the universality of chaperones in effector secretion. Here, we describe the development of the first high-throughput type III secretion (T3S) assay, a semiautomated solid-plate-based assay, which enables the side-by-side comparison of secretion of over 20 Shigella effectors under a multitude of conditions. Strikingly, we found that the majority of Shigella effectors are secreted at equivalent levels by wild-type and variants of Shigella that no longer encode one or all known Shigella T3S effector chaperones. In addition, we found that Shigella effectors are efficiently secreted from a laboratory strain of Escherichia coli expressing the core Shigella type III secretion apparatus (T3SA) but no other Shigella-specific proteins. Furthermore, we observed that the sequences necessary and sufficient to define chaperone-dependent and -independent effectors are fundamentally different. Together, these findings support the existence of a major, previously unrecognized, noncanonical chaperone-independent secretion pathway that is likely common to many T3SSs.IMPORTANCE Many bacterial pathogens use specialized nanomachines, including type III secretion systems, to directly inject virulence proteins (effectors) into host cells. Here, we present the first extensive analysis of chaperone dependence in the process of type III effector secretion, providing strong evidence for the existence of a previously unrecognized chaperone-independent pathway. This noncanonical pathway is likely common to many bacteria, as an extensive review of the literature reveals that the secretion of multiple type III effectors has not yet been knowingly linked to a chaperone. While additional studies will be required to discern the molecular details of this pathway, its prevalence suggests that it can likely serve as a new target for the development of antimicrobial agents.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Chaperonas Moleculares/metabolismo , Shigella/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Chaperonas Moleculares/genética , Unión Proteica , Señales de Clasificación de Proteína , Transporte de Proteínas , Eliminación de Secuencia , Shigella/genética , Factores de Virulencia/genética
12.
J Bacteriol ; 199(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795324

RESUMEN

The type III secretion system (T3SS) is a supramolecular machine used by many bacterial pathogens to translocate effector proteins directly into the eukaryotic host cell cytoplasm. Enteropathogenic Escherichia coli (EPEC) is an important cause of infantile diarrheal disease in underdeveloped countries. EPEC virulence relies on a T3SS encoded within a chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE). In this work, we pursued the functional characterization of the LEE-encoded protein EscK (previously known as Orf4). We provide evidence indicating that EscK is crucial for efficient T3S and belongs to the SctK (OrgA/YscK/MxiK) protein family, whose members have been implicated in the formation of a sorting platform for secretion of T3S substrates. Bacterial fractionation studies showed that EscK localizes to the inner membrane independently of the presence of any other T3SS component. Combining yeast two-hybrid screening and pulldown assays, we identified an interaction between EscK and the C-ring/sorting platform component EscQ. Site-directed mutagenesis of conserved residues revealed amino acids that are critical for EscK function and for its interaction with EscQ. In addition, we found that T3S substrate overproduction is capable of compensating for the absence of EscK. Overall, our data suggest that EscK is a structural component of the EPEC T3SS sorting platform, playing a central role in the recruitment of T3S substrates for boosting the efficiency of the protein translocation process. IMPORTANCE: The type III secretion system (T3SS) is an essential virulence determinant for enteropathogenic Escherichia coli (EPEC) colonization of intestinal epithelial cells. Multiple EPEC effector proteins are injected via the T3SS into enterocyte cells, leading to diarrheal disease. The T3SS is encoded within a genomic pathogenicity island termed the locus of enterocyte effacement (LEE). Here we unravel the function of EscK, a previously uncharacterized LEE-encoded protein. We show that EscK is central for T3SS biogenesis and function. EscK forms a protein complex with EscQ, the main component of the cytoplasmic sorting platform, serving as a docking site for T3S substrates. Our results provide a comprehensive functional analysis of an understudied component of T3SSs.


Asunto(s)
Proteínas Portadoras/metabolismo , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Sistemas de Secreción Tipo III/fisiología , Proteínas Portadoras/genética , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA