Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124880

RESUMEN

Vacuum-Assisted Sorbent Extraction (VASE) is a novel extraction technique that uses vacuum to facilitate the transfer of volatile compounds from the matrix to the sorbent. This technique was explored for extraction of volatiles from cape gooseberry fruit, for both qualitative and quantitative analyses. Selected extraction parameters were tested: sample size, extraction temperature and time, influence of tissue disintegration on release of volatiles, and also addition of Ag+1 ions in the form of AgNO3 to stop enzymatic formation of volatile compounds. For selected conditions (10 g sample, extraction for 30 min. at 40 °C of volatiles from blended fruit) quantitative aspects were explored. Twenty-two compounds of cape gooseberry were tested. The method was characterized with a very good linearity in a range of 10-5000 µg/kg and good reproducibility. The experiments proved the usefulness of VASE in both volatile profiling and quantitative analyses of cape gooseberry and in prospective other fruit.


Asunto(s)
Frutas , Physalis , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación , Compuestos Orgánicos Volátiles/química , Physalis/química , Frutas/química , Vacio , Reproducibilidad de los Resultados , Extractos Vegetales/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Extracción en Fase Sólida/métodos
2.
Talanta ; 269: 125492, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042142

RESUMEN

A novel fully automatic continuous flow polyurethane foam solid phase microextraction lab-in-syringe system for on-line sample preconcentration/separation has been developed as a front-end to flame atomic absorption spectrometry. For the first time lab-in-syringe in continuous flow has been adopted for the determination of toxic metals. The microextraction procedure was performed after on-line metal complexation with ammonium pyrrolidine dithiocarbamate, while the elution was conducted by 400 µL of methyl isobutyl ketone. The main chemical and hydrodynamic factors that affected the performance of the method were optimized using Cd and Pb as model analytes. For 90 s preconcentration time, the limits of the detection were 0.20 and 1.7 µg L-1 for Cd and Pb, respectively, while the enhancement factors were 79 for Cd and 150 for Pb. The relative standard deviation% values were lower than 2.8 % for all analytes. As a proof-of-concept the proposed system was used for environmental water analysis, providing relative recoveries within the range of 94.0 and 104.4 %. The Green Analytical Procedure Index and Blue Applicability Grade Index proved reduced environmental impact and high practicality for the proposed method.

3.
Mikrochim Acta ; 190(8): 334, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507625

RESUMEN

Three novel N-rich hypercrosslinked porous polymers (NHCP1, NHCP2, and NHCP3) were facilely developed using Friedel-Crafts alkylation. NHCP1 with a remarkably large surface area (2066 m2 g-1) showed the best adsorption performance for chlorophenol pollutants. A sensitive and simple method was developed by using NHCP1 as a sorbent for solid-phase extraction to preconcentrate several chlorophenols in honey, water, and peach beverage samples followed by determination using a high-performance liquid chromatography-ultraviolet detector. The detection wavelength was 280 nm. Under the optimized conditions, the linear ranges were 1.67-1000 ng g-1 for honey, 0.170-100 ng mL-1 for water, and 0.330-100 ng mL-1 for peach beverage samples. The detection limits (S/N = 3) were 0.500-2.00 ng g-1, 0.0500-0.100 ng mL-1, and 0.100-0.200 ng mL-1, respectively. Recovery values were 89.3-111% with relative standard deviations <9.4%. The proposed extraction/preconcentration and quantitative analysis method provides an affordable and effective alternative for the preconcentration and determination of low levels of chlorophenols in real samples.

4.
Mikrochim Acta ; 189(12): 446, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370194

RESUMEN

A composite magnetic adsorbent was developed by embedding graphene quantum dots (GQDs), silica-modified magnetite (Fe3O4-SiO2), and mesoporous carbon (MPC) into a molecularly imprinted polymer (GQDs/Fe3O4-SiO2/MPC/MIP). The adsorbent was applied to extract nonsteroidal anti-inflammatory drugs (NSAIDs) in milk. The MIP was formed via a sol-gel copolymerization using flurbiprofen, diflunisal, and mefenamic acid as template molecules, 3-aminopropyltriethoxysilane as a monomer, and tetraethyl orthosilicate as a cross-linker. GQDs and MPC enhanced affinity binding between NSAIDs and the adsorbent through π-π stacking, hydrogen bonding, and hydrophobic interaction. The Fe3O4-SiO2 nanoparticles embedded in the composite adsorbent enabled its rapid isolation from the sample solution. The extracted NSAIDs were quantified by high-performance liquid chromatography and exhibited good linearity from 1.0 to 100.0 µg L-1 for flurbiprofen and 0.5 to 100.0 µg L-1 for diflunisal and mefenamic acid, respectively. The limits of detection ranged from 0.5 to 1.0 µg L-1. Recoveries of NSAIDs from spiked milk samples ranged from 81.4 to 93.7%, with RSDs below 7%. The reproducibility of the fabricated adsorbent was good and in the optimal conditions, the developed adsorbent could be used for up to six extraction-desorption cycles.


Asunto(s)
Diflunisal , Flurbiprofeno , Grafito , Impresión Molecular , Puntos Cuánticos , Animales , Grafito/química , Leche/química , Polímeros Impresos Molecularmente , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos , Puntos Cuánticos/análisis , Ácido Mefenámico/análisis , Dióxido de Silicio/química , Carbono , Diflunisal/análisis , Reproducibilidad de los Resultados , Antiinflamatorios no Esteroideos/análisis
5.
Mikrochim Acta ; 188(3): 79, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33569651

RESUMEN

Timolol accompanied the formation of fluorescent ß-ketoenamine-linked covalent organic frameworks (COFs) via the Sc(Tof)3-catalyzed condensation of derivated carbaldehyde and hydrazide in a 1,4-dioxane/mesitylene porogen to construct timolol-imprinted COFs (TICOFs). With high imprinting factors, the synthesis-optimized TICOFs were characterized by fluorescence, UV-Vis spectrometry, X-ray diffraction, N2 adsorption/desorption analyses, scanning electron microscopy, and FTIR spectrometry. The TICOF fluorescence measured at 390 nm/510 nm is dynamically quenched by timolol and was thus utilized to quantify timolol in a linear range of 25-500 nM with a LOD of 8 nM. The TICOF recovered 99.4% of 0.5% timolol maleate in a commercial eye drop (RSD = 1.1%, n = 5). In addition, TICOF was used as a dispersive sorbent to recover 95% of 2.0 nM timolol from 20 mg of TICOF in 25 mL phosphate buffer. Dilution factors of 25 and 75 were the maximum tolerated proportions of the urine and serum matrix spiked with 2.0 nM timolol to reach recoveries of 92.4% and 90.3%, respectively.


Asunto(s)
Antagonistas Adrenérgicos beta/análisis , Colorantes Fluorescentes/química , Estructuras Metalorgánicas/química , Polímeros Impresos Molecularmente/química , Timolol/análisis , Antagonistas Adrenérgicos beta/sangre , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/orina , Adsorción , Colorantes Fluorescentes/síntesis química , Humanos , Límite de Detección , Estructuras Metalorgánicas/síntesis química , Polímeros Impresos Molecularmente/síntesis química , Soluciones Oftálmicas/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Fluorescencia/métodos , Timolol/sangre , Timolol/química , Timolol/orina
6.
Talanta ; 208: 120390, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816753

RESUMEN

Vacuum-assisted sorbent extraction (VASE) has been applied in combination with gas chromatography-mass spectrometry for the determination of UV filters in water samples. VASE is a variant of headspace extraction which was developed in conjunction with the sorbent pen (SP) technology. This technique combines the advantages of both stir-bar assisted extraction and headspace solid-phase microextraction. The SP traps allowed both reduced pressure in-vial extraction and direct thermal desorption via a unique gas chromatographic injection port. The main parameters that affect the performance of VASE, including both extraction and desorption conditions, were extensively optimized. Under optimum conditions, extraction required 10 mL of sample within 40 mL vials, pH 3.5, ~30 s of air-evacuation, 14 h incubation at 70 °C, stirring at 200 rpm, and a final water management step conducted at ~ -17 °C for 15 min. Optimal thermal desorption required preheating at 260 °C for 2 min followed by desorption at 300 °C for 2 min. The beneficial effect of reduced-pressure extraction was demonstrated by comparing the UV filter extraction time profiles collected using VASE to an analogous atmospheric pressure procedure, resulting in up to a 3-fold improvement under optimized conditions. The VASE methodology enabled simultaneous extractions using different SPs without compromising the method reproducibility, which increases the overall sample throughput. The method was characterized by low limits of detection, from 0.5 to 80 ng L-1, and adequate reproducibility, with inter-SP and inter-day relative standard deviation lower than 14%. Tap and lake water was successfully analyzed with the proposed methodology, resulting in relative recoveries of spiked samples ranging between 70.0 and 120%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA