Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(16): 18999-19007, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33856780

RESUMEN

Efficient thermoelectric generators require further progress in developing n-type semiconductors that combine low thermal conductivity with high electrical conductivity. By embedding colloidal quantum dots (CQDs) in a metal halide matrix (QDMH), the metal halide matrix can enhance phonon scattering, thus suppressing thermal transport; however, simultaneously achieving high electrical conductivity in such systems has previously been limited by the deleterious impact of a large density of interfaces on charge transport. Therefore, new strategies are needed to improve charge carrier transport without sacrificing matrix-enabled low thermal transport. Here, we report the use of chemical doping in the solution state to improve electron transport while maintaining low thermal transport in QDMH films. By incorporating cesium carbonate (Cs2CO3) salts as a dopant prior to matrix formation, we find that the dopant stabilizes the matrix in colloidal inks and enables efficient n-type doping in QDMH films. As a result, this strategy leads to an enhanced n-type thermoelectric behavior in solution-processed QDMH films near room temperature, with a thermal conductivity of 0.25 W m-1 K-1-significantly lower than in prior films based on organic-ligand-cross-linked CQD films (>0.6 W m-1 K-1) and spark-plasma-sintered CQD systems (>1 W m-1 K-1). This study provides a pathway to developing efficient n-type thermoelectric materials with low thermal conductivity using single-step deposition and low-temperature processing.

2.
ACS Appl Mater Interfaces ; 12(28): 31591-31600, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32564590

RESUMEN

Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V-1 s-1, a value higher than that of control transistors (≈10-2 cm2 V-1 s-1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V-1 s-1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA