Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 285: 117040, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270476

RESUMEN

Amaranthus spp. are a group of strongly invasive and vigorous plants, and heavy metal phytoremediation using alien invasive Amaranthus spp. has been a popular research topic. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of Amaranthus spp. were evaluated, focusing on the accumulation potential of cadmium (Cd) and lead (Pb) by plants from three different zinc mining areas, namely Huayuan (HYX), Yueyang (LYX), and Liuyang (LYX). The HYX area has the most severe Cd contamination, while the LYX area has the most apparent Pb contamination. The results showed that Amaranthus spp. had a strong Cd and Pb enrichment capacity in low-polluted areas. To elucidate the underlying mechanisms, we used high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions to analyze rhizosphere bacterial and fungal communities in three areas. The results showed significant differences in the structure, function, and composition of microbial communities and complex interactions between plants and their microbes. The correlation analysis revealed that some key microorganisms (e.g., Amycolatopsis, Bryobacterium, Sphingomonas, Flavobacterium, Agaricus, Nigrospora, Humicola) could regulate several soil factors such as soil pH, organic matter (OM), available nitrogen (AN), and available phosphorus (AP) to affect the heavy metal enrichment capacity of plants. Notably, some enzymes (e.g., P-type ATPases, Cysteine synthase, Catalase, Acid phosphatase) and genes (e.g., ZIP gene family, and ArsR, MerR, Fur, NikR transcription regulators) have been found to be involved in promoting Cd and Pb accumulation in Amaranthus spp. This study can provide new ideas for managing heavy metal-contaminated soils and new ways for the ecological resource utilization of invasive plants in phytoremediation.

2.
Environ Res ; 262(Pt 2): 119868, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216739

RESUMEN

Erigeron sumatrensis is a vigorously growing invasive plant in mining areas and has been the subject of research for its potential in the phytoremediation of heavy metals. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of E. sumatrensis were assessed to evaluate its phytoaccumulation potential for cadmium (Cd) and lead (Pb) across three distinct zinc mining regions with different degrees of contamination, including Huayuan (HY), Yueyang (YY), and Liuyang (LY) areas. The region of HY is identified as having the most severe Cd contamination, while the most pronounced Pb pollution characterizes the LY area. The findings indicate that E. sumatrensis demonstrated a stronger ability to enrich Cd and Pb in less contaminated areas. To elucidate the underlying mechanisms, high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions was employed to analyze the rhizosphere bacterial and fungal communities across the three areas. The results revealed significant variations in the microbial community structure, function, and composition, suggesting a complex interplay between the plant and its associated microorganisms. Correlation analysis identified several soil properties, including soil pH, total nitrogen (TN), available nitrogen (AN), organic matter (OM), and available phosphorus (AP), as pivotal factors that may influence the heavy metal enrichment capabilities of the plant. Notably, some microorganisms (e.g., Burkholderia, Brevundimonas, Paraglomus, and Trichoderma) and enzymes (e.g., P-type ATPases, citrate synthase, catalase) of microorganisms were found to be potentially involved in facilitating the accumulation of Cd and Pb by E. sumatrensis. This research contributes to understanding how invasive alien plants can be utilized to remedy contaminated environments. It highlights the importance of modulating critical soil factors to enhance the phytoremediation potential of E. sumatrensis, which could aid in developing strategies to manage invasive plants and mitigate heavy metal pollution in ecosystems.

3.
Plants (Basel) ; 13(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124143

RESUMEN

Argania spinosa (L.) Skeels is an endemic species to Morocco that has multiple uses. It plays multiple important roles in terms of its botanical, ecological, and economic properties. However, the domestication of this species will open up considerable economic opportunities for Morocco. Here, for the first time, we assessed the effect of different doses of compost and NPK fertilizers on the vegetative growth parameters, biochemical and antioxidant potential of the Argania spinosa plant, and soil properties. Over a two-year period (2022-2023), eight different treatments were applied across two experimental sites. These treatments included the following: T0 (Control), T1 (F1-80.50.70 g NPK/plant), T2 (F1-125.75.100 g NPK/plant), T3 (F2-160.100.140 g NPK/plant), T4 (F2-250.150.200 g NPK/plant), T5 (F1-2.5 kg/plant compost), T6 (F1-5 kg/plant compost), T7 (F2-5 kg/plant compost), and T8 (F2-10 kg/plant compost), with F1 and F2 being the frequencies of application. We compared several doses of fertilizers with no fertilization as a control. The results showed a significant influence of the compost and NPK fertilizer on the vegetative growth parameters. For the Tamjlojt site, the first year is important because treatments T3 and T4 significantly increased height by 71.94 ± 21.15% and 74.31 ± 12.31%, respectively. For the circumference, the results showed a significant improvement by the treatments T4 and T3, and T1 demonstrated the highest gain. For the collar diameter, all treatments showed a significant difference. The most notable difference was observed with treatments T3 and T7 with 115.63 ± 33.88% and 101.09 ± 20.84%, respectively. For the Rasmouka site, the second year was the most important. The treatments with the most important height increase were T7 and T8, with a value of 43.14 ± 10.06% and 36.44 ± 9.95%; the same was observed for collar diameter as a significant increase was found in T8 and T7 with a value of 55.05 ± 15.7% and 54.08 ± 9.64%. For the circumference parameter, the treatments that increased significantly this parameter were T8 and T7 with a value of 53.36 ± 15.11% and 50.34 ± 11.29% in 2023. In addition, the highest content of carbohydrates was recorded for the treatment T3 with a value of 148.89 ± 8.11 (mg EG/g). For phenolic determination, the highest value was 2532 ± 457.13 (µg GAE/mL), shown for treatment T1. For flavonoids, the treatments that showed a significant effect were T1 and T6 with a value of 2261.98 ± 184.61 and 1237.70 ± 95.65 (µg QE/mL), respectively. For the impact on soil properties, the electrical conductivity, at the Tamjlojt site, treatment T1 showed a significant increase to 1139.00 ± 241.30 (ms/cm), while at the Rasmouka site, treatment T8 showed a significant increase to 303.33 ± 9.33 (ms/cm). Concerning organic carbon, all treatments resulted in increased percentages of this parameter in the soil. For the Tamjlojt site, the T7 treatment had a significant positive effect on this parameter with a value of 0.87 ± 0.12%. For the Rasmouka site, the T3 treatment increased the percentage of organic carbon with a value of 1.17 ± 0.07%. In addition, the organic matter content showed an improvement with a value of 2.02 ± 0.12%. As there are no previous studies in Argania spinosa fertilization, this study greatly contributes to our understanding of the benefits of using different fertilizers at different doses, in particular T8 and T7 as organic fertilizers and T3, T4 as chemical ones, on argan growth, the biochemical and antioxidant properties of leaves, and its soil properties.

4.
Front Microbiol ; 15: 1258934, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440136

RESUMEN

In dry deciduous tropical forests, both seasons (winter and summer) offer habitats that are essential ecologically. How these seasonal changes affect soil properties and microbial communities is not yet fully understood. This study aimed to investigate the influence of seasonal fluctuations on soil characteristics and microbial populations. The soil moisture content dramatically increases in the summer. However, the soil pH only gradually shifts from acidic to slightly neutral. During the summer, electrical conductivity (EC) values range from 0.62 to 1.03 ds m-1, in contrast to their decline in the winter. The levels of soil macronutrients and micronutrients increase during the summer, as does the quantity of soil organic carbon (SOC). A two-way ANOVA analysis reveals limited impacts of seasonal fluctuations and specific geographic locations on the amounts of accessible nitrogen (N) and phosphorus (P). Moreover, dehydrogenase, nitrate reductase, and urease activities rise in the summer, while chitinase, protease, and acid phosphatase activities are more pronounced in the winter. The soil microbes were identified in both seasons through 16S rRNA and ITS (Internal Transcribed Spacer) gene sequencing. Results revealed Proteobacteria and Ascomycota as predominant bacterial and fungal phyla. However, Bacillus, Pseudomonas, and Burkholderia are dominant bacterial genera, and Aspergillus, Alternaria, and Trichoderma are dominant fungal genera in the forest soil samples. Dominant bacterial and fungal genera may play a role in essential ecosystem services such as soil health management and nutrient cycling. In both seasons, clear relationships exist between soil properties, including pH, moisture, iron (Fe), zinc (Zn), and microbial diversity. Enzymatic activities and microbial shift relate positively with soil parameters. This study highlights robust soil-microbial interactions that persist mainly in the top layers of tropical dry deciduous forests in the summer and winter seasons. It provides insights into the responses of soil-microbial communities to seasonal changes, advancing our understanding of ecosystem dynamics and biodiversity preservation.

5.
Chemosphere ; 352: 141460, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364927

RESUMEN

Millions of people worldwide are affected by arsenic (As) contamination, particularly in South and Southeast Asian countries, where large-scale dependence on the usage of As-contaminated groundwater in drinking and irrigation is a familiar practice. Rice (Oryza sativa) cultivation is commonly done in South and Southeast Asian countries as a preferable crop which takes up more As than any other cereals. The present article has performed a scientific meta-data analysis and extensive bibliometric analysis to demonstrate the research trend in global rice As contamination scenario in the timeframe of 1980-2023. This study identified that China contributes most with the maximum number of publications followed by India, USA, UK and Bangladesh. The two words 'arsenic' and 'rice' have been identified as the most dominant keywords used by the authors, found through co-occurrence cluster analysis with author keyword association study. The comprehensive perceptive attained about the factors affecting As load in plant tissue and the nature of the micro-environment augment the contamination of rice cultivars in the region. This extensive review analyses soil parameters through meta-data regression assessment that influence and control As dynamics in soil with its further loading into rice grains and presents that As content and OM are inversely related and slightly correlated to the pH increment of the soil. Additionally, irrigation and water management practices have been found as a potential modulator of soil As concentration and bioavailability, presented through a linear fit with 95% confidence interval method.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Humanos , Suelo/química , Arsénico/análisis , Asia , Agua/análisis , Asia Sudoriental , Contaminantes del Suelo/análisis
6.
Nat Prod Res ; 38(4): 563-580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285923

RESUMEN

Phytochemicals have become significantly important for scientific research since these possess incredibly remarkable health benefits, especially antioxidant potential to scavenge free radicals and combat the harmful effects of oxidative stress caused by adverse environmental factors. The efficacy and quantity of these phytochemicals relies upon numerous factors including the extraction method, solvent polarity and the habitat features in which the plant is growing. In this study we emphasized on phytochemical analysis and antioxidant activity of Bistorta amplexicaulis, an important medicinal plant species from Kashmir Himalaya. We evaluated antioxidant activity using different assays from all the selected sites to enumerate the impact of habitat. The sites were selected based on varying habitat features and altitude. Our results revealed that Ethyl acetate is the potent solvent for the extraction of phytochemicals. Below ground parts exhibited better scavenging activity than the above ground parts. Amongst the sites, we found the maximum antioxidant potential at Site I. A positive correlation was found between antioxidant activity and altitude while soil attributes (OC, OM, N, P, and K) and most of the morphological traits showed a negative correlation. Overall, our study identified the elite populations that could be utilized for mass propagation and harness the ultimate antioxidant potential of B. amplexicaulis.


Asunto(s)
Antioxidantes , Extractos Vegetales , Antioxidantes/farmacología , Antioxidantes/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/análisis , Altitud , Fitoquímicos/farmacología , Fitoquímicos/análisis , Ecosistema , Solventes
7.
Sci Total Environ ; 896: 165263, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37400023

RESUMEN

Understanding the behavior of metal(loi)ds transported from soil to humans is critical for human health risk assessment (HHRA). In the last two decades, extensive studies have been conducted to better assess human exposure to potentially toxic elements (PTEs) by estimating their oral bioaccessibility (BAc) and quantifying the influence of different factors. This study reviews the common in vitro methods used to determine the BAc of PTEs (in particular As, Cd, Cr, Ni, Pb, and Sb) under specific conditions (particularly in terms of the particle size fraction and validation status against an in vivo model). The results were compiled from soils derived from various sources and allowed the identification of the most important influencing factors of BAc (using single and multiple regression analyses), including physicochemical soil properties and the speciation of the PTEs in question. This review presents current knowledge on integrating relative bioavailability (RBA) in calculating doses from soil ingestion in the HHRA process. Depending on the jurisdiction, validated or non-validated bioaccessibility methods were used, and risks assessors applied different approaches: (i) using default assumptions (i.e., RBA of 1); (ii) considering that bioaccessibility value (BAc) accurately represents RBA (i.e., RBA equal to BAc); (iii) using regression models to convert BAc of As and Pb into RBA as proposed by the USA with the US EPA Method 1340; or (iv) applying an adjustment factor as proposed by the Netherlands and France to use BAc from UBM (Unified Barge Method) protocol. The findings from this review should help inform risk stakeholders about the uncertainties surrounding using bioaccessibility data and provide recommendations for better interpreting the results and using bioaccessibility in risk studies.


Asunto(s)
Contaminantes del Suelo , Suelo , Humanos , Suelo/química , Plomo/análisis , Contaminantes del Suelo/análisis , Países Bajos , Medición de Riesgo/métodos , Disponibilidad Biológica
8.
Plants (Basel) ; 12(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37176834

RESUMEN

Ocimum basilicum var. thyrsiflora is valuable for its medicinal properties. The barriers to the commercialization of essential oil are the lack of requisite high oil-containing genotypes and variations in the quantity and quality of essential oils in different geographic areas. Thai basil's essential oil content is significantly influenced by soil and environmental factors. To optimize and predict the essential oil yield of Thai basil in various agroclimatic regions, the current study was conducted. The 93 datasets used to construct the model were collected from samples taken across 10 different agroclimatic regions of Odisha. Climate variables, soil parameters, and oil content were used to train the Artificial Neural Network (ANN) model. The outcome showed that a multilayer feed-forward neural network with an R squared value of 0.95 was the most suitable model. To understand how the variables interact and to determine the optimum value of each variable for the greatest response, the response surface curves were plotted. Garson's algorithm was used to discover the influential predictors. Soil potassium content was found to have a very strong influence on responses, followed by maximum relative humidity and average rainfall, respectively. The study reveals that by adjusting the changeable parameters for high commercial significance, the ANN-based prediction model with the response surface methodology technique is a new and promising way to estimate the oil yield at a new site and maximize the essential oil yield at a particular region. To our knowledge, this is the first report on an ANN-based prediction model for Ocimum basilicum var. thyrsiflora.

9.
Ecotoxicol Environ Saf ; 256: 114870, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37037108

RESUMEN

Heavy metal pollution caused by a large number of abandoned industrial sites cannot be underestimated, but its human health risks have not been accurately assessed. This study investigated the pollution of heavy metals in soils of the typical abandoned industrial sites in southeastern China. Based on the bioaccessibility of different heavy metals (Pb, Ni, Cu, Zn, Cd, Cr) in the industrial soils, the human health risks were accurately evaluated, and the controlling factors were quantitatively assessed. The results showed that the heavy metals in each typical abandoned industrial sites had a high degree of spatial heterogeneity. Among them, Cd was the most susceptible to relevant discrete input from external factors such as human activities, followed by Zn, Pb, Cr, Ni and Cu. The bioaccessible concentration of heavy metals by the physiological-based extraction test (PBET) had a good correlation (R2 = 0.58 ∼ 0.86) with its bioavailable concentration by diethylenetriaminepentaacetic acid (DTPA) extraction. The regression model based on soil parameters had great potential to predict the bioaccessibility of heavy metals in abandoned industrial sites (R2 = 0.49 ∼ 0.95). The total concentration of heavy metals, Fe, soil texture and pH were the controlling factors of the metal bioaccessibility. Compared with the total concentration, the hazard index (HI) and carcinogenic risk (CR) values calculated based on gastrointestinal bioaccessibility were decreased by 39.0∼77.9% and 68.2∼79.9% in adults, and 45.3∼88.0% and 73.9∼83.5% in children, respectively. This work provides a feasible theoretical basis for reliable assessment of the human health risks of heavy metals in the abandoned industrial sites in the future.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Adulto , Humanos , Cadmio , Plomo , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Suelo , China , Medición de Riesgo
10.
Bol. latinoam. Caribe plantas med. aromát ; 22(2): 204-213, mar. 2023. mapas, tab
Artículo en Inglés | LILACS | ID: biblio-1555379

RESUMEN

In this study, the effects of altitude and soil properties on the essential oil amounts and essential oil components of the Turkish sage (Salvia fruticosaMill.) plant were investigated. A location in the south of Turkey in the Kas district of Antalya with altitude ranges of 0-200 m, 300-500 m, and 600-800 m was defined as the study area. During the full flowering period of S. fruticosa, plants and soil samples were collected. The contents of the essential oils of the plants were analyzed using GC-MS. According to the results obtained, the essential oil content of plants varied between 1.91% and 5.10%. The main component of the essential oils of the plants collected from all study areas was 1,8-cineol, at 44.93%. It was concluded that variations in the proportions of the components limonene and linalool, which are essential oil components of plants, are not only dependent on altitude but also on changes in soil texture and the total CaCO3 content of the soil.


En este estudio, se investigaron los efectos de la altitud y las propiedades del suelo sobre las cantidades de aceite esencial y los componentes del aceite esencial de la planta de salvia turca (Salvia fruticosa Mill). Se definió como área de estudio una ubicación de 300-500 m a 600-800 m en el sur de Turquía en el distrito de Kas de Antalya con rangos de altitud de 0-200 m. Durante el período de plena floración de S. fruticosa, se recolectaron plantas y muestras de suelo. El contenido de los aceites esenciales de las plantas se analizó mediante GC-MS. Según los resultados obtenidos, el contenido de aceite esencial de las plantas varió entre el 1,91% y el 5,10%. El componente principal de los aceites esenciales de las plantas recolectadas de todas las áreas de estudio fue el 1,8-cineol, al 44,93%. Se concluyó que las variaciones en las proporciones de los componentes limoneno y linalol, que son componentes del aceite esencial de las plantas, no solo dependen de la altitud sino también de los cambios en la textura del suelo y el contenido total de CaCO3 del suelo.


Asunto(s)
Aceites Volátiles/química , Características del Suelo , Salvia/química , Altitud , Presión Atmosférica , Turquía
11.
Mar Pollut Bull ; 188: 114676, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36764143

RESUMEN

Atmospheric greenhouse gas (GHG) emissions from seagrass meadows that determine the ecosystem atmospheric cooling effect have rarely been quantified. This study measured the simultaneous fluxes direct to the atmosphere of three GHGs (CO2, CH4 and N2O) within a Halophila beccarii seagrass meadow and an adjacent unvegetated bare intertidal flat, and their relationships to seagrass abundance and relevant soil parameters. The results showed that seasonal variation in seagrass abundance was strongly linked with the CO2 exchange rate. The CH4 and N2O fluxes were similarly low at both sites and comparable between winter and summer. The global warming potential of CH4 and N2O reduced the ecosystem CO2 uptake by only 5 % at the seagrass site. The results indicated that the H. beccarii meadow had a stronger atmospheric cooling effect than the bare flat and that the seagrass-mediated CO2 flux in this oligotrophic seagrass meadow primarily determined the atmospheric cooling effect.


Asunto(s)
Dióxido de Carbono , Ecosistema , Dióxido de Carbono/análisis , Metano/análisis , Óxido Nitroso/análisis , Monitoreo del Ambiente , Suelo
12.
Environ Sci Pollut Res Int ; 30(55): 116751-116764, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36112284

RESUMEN

Land degradation (LD) and desertification are serious ecological, environmental, and social-economic threats in the world, and there is a demanding need to develop accountable and reproducible techniques to assess them at different scales. This study assesses LD and desertification with the help of remote sensing (RS) and geographical information system (GIS) in the study region for the period past 29 years, i.e., from 1990 to 2019. The severity of LD and desertification was assessed quantitatively by collecting twelve soil samples in the study region and analyzing the eleven soil physico-chemical parameters and these values have made correlated with digital number (DN) values with LANDSAT 8 OLI/TIRS satellite image. The land cover analysis of LANDSAT imagery revealed that the water body slightly increased from 0.29% in 1990 to 0.46% in 2019, and built-up-land increased from 2.87% in 1990 to 5.31% in 2019. Vegetation decreased from 52.03% in 1990 to 28.57%. Fallow land, degraded land, and desertified lands increased at alarming rates, respectively 13.71% to 26.35, 18.57% to 22.31%, and 12.53% to 17.00%. It is also established that the multi-temporal analysis of change detection data can provide a sophisticated measure of ecosystem health and variation, and that, over the last 29 years, considerable progress has been made in the respective research.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Suelo
13.
Environ Sci Pollut Res Int ; 30(11): 31085-31101, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36441330

RESUMEN

Soils interact in many ways with metal ions thereby modifying their mobility, phase distribution, plant availability, speciation, and so on. The most prominent of such interactions is sorption. In this study, we investigated the sorption of Pb, Cd, and Cu in five natural soils of Nigerian origin. A relatively sparsely used method of modelling soil-metal ion adsorption, i.e. adaptive neuro-fuzzy inference system (ANFIS), was applied comparatively with multiple linear regression (MLR) models. The isotherms were well described by Freundlich and Langmuir equations (R2 ≥ 0.95) and the kinetics by nonlinear two-stage kinetic model, TSKM (R2 ≥ 0.81). Based on the values delivered by the Langmuir equation, the maximum adsorption capacities (Qm*) were found to be in the ranges 10,000-20,000, 12,500-50,000, and 4929-35,037 µmol kg-1 for Cd, Cu, and Pb, respectively. The study revealed significant correlations between Qm* and routinely determined soil parameters such as soil organic carbon (Corg), cation exchange capacity (CEC), amorphous Fe and Mn oxides, and percentage clay content. These soil parameters, combined with operational variables (i.e. solution/soil pH, initial metal concentration (Co), and temperature), were used as input vectors in ANFIS and MLR models to predict the adsorption capacities (Qe) of the soil-metal ion systems. A total of 255 different ANFIS and 255 different MLR architectures/models were developed and compared based on three performance metrics: MAE (mean absolute error), RMSE (root mean square errors), and R2 (coefficient of determination). The best ANFIS returned MAEtest 0.134, RMSEtest 0.164, and R2test 0.76, while the best MLR returned MAEtest 0.158, RMSEtest 0.199, and R2test 0.66, indicating the predictive advantage of ANFIS over MLR. Thus, ANFIS can fairly accurately predict the adsorption capacity and/or distribution coefficient of a soil-metal ion system a priori. Nevertheless, more investigation is required to further confirm the robustness/generalisation of the proposed ANFIS.


Asunto(s)
Cadmio , Contaminantes del Suelo , Adsorción , Cadmio/análisis , Carbono , Plomo , Modelos Lineales , Suelo/química , Contaminantes del Suelo/análisis , Cobre/química
14.
Plants (Basel) ; 11(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36501433

RESUMEN

The rampant bayberry decline disease has been regarded as related to soil with the long-term plantation bayberry. These parameters, hydrogen, aluminum, other alkali cations, and plant-related nutrients, were measured from the soil around diseased tree roots 10, 20, and 30 years old. The pH significantly declined in topsoil with increasing tree age and rose with increasing depth of the soil layer with an age of 10, 20, and 30 years. The concentration of exchangeable aluminum has risen significantly with the increase of the tree ages in the top soil layer and also in 0 to 40 cm soils layer with ten-year-old trees. In the top soil layer with a depth of 0 to 10 cm, the cation concentrations of Ca2+, Mg2+, and K+ has fallen significantly with the increase of tree ages. A higher concentration of exchangeable aluminum was observed in the soil with trees more seriously affected by the disease and was accompanied with lower concentrations of Ca2+, Mg2+, and K+. The correlation analysis showed that the soil pH is significantly positively related to the concentration of exchangeable Ca2+, total nitrogen, and total phosphorus and negatively to exchangeable aluminum. These findings provided a new insight to mitigate the disease by regulating the soil parameters.

15.
Plant Dis ; 106(10): 2730-2740, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36094426

RESUMEN

As the excessive use of chemical fertilizers harms organisms and adversely affects the soil environment, the replacement of chemical fertilizers with biological fertilizers has attracted widespread attention as an environmental protection strategy. In this study, the effects of rhizosphere bacteria inoculation on growth of Pinus sylvestris var. mongolica seedlings, soil parameters, soil microbial community structure, and the biocontrol of damping-off were studied by pot experiments. The results showed that all three rhizosphere bacteria (Pseudomonas chlororaphis, Pseudomonas extremaustralis, and Acinetobacter lwoffii A07) tested exhibited growth-promoting properties, such as the production of indole-3-acetic acid, hydrolase, siderophores, and hydrogen cyanide; nitrogen fixation; and phosphorus solubilization. The application of the three bacteria increased plant biomass, root structure, and nutrient content and also increased soil nutrient content and enzyme activity. Bacterial inoculation promoted the growth of beneficial bacteria and antagonistic bacteria by adjusting the physicochemical properties of the soil, thereby improving the bacterial community structure. Among the soil features, available nitrogen, total nitrogen, available potassium, and urease activity were the main influencing factors. In addition, it was also found that bacterial inoculation significantly increased the activities of plant superoxide dismutase, catalase, peroxidase, and other defense enzymes; enhanced plant disease resistance; effectively inhibited damping-off; and promoted plant growth. In summary, the application of three rhizosphere bacteria systematically affected the interaction between plants, soil parameters, and soil microbial communities. These results provide a basis for understanding how rhizosphere bacteria promote the growth of P. sylvestris var. mongolica, thereby offering a promising sustainable alternative to chemical fertilizers.


Asunto(s)
Microbiota , Pinus sylvestris , Bacterias , Catalasa , Fertilizantes , Cianuro de Hidrógeno , Nitrógeno/análisis , Fósforo , Potasio , Rhizoctonia , Plantones/química , Sideróforos , Suelo/química , Superóxido Dismutasa , Ureasa
16.
Chemosphere ; 307(Pt 3): 136032, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35977571

RESUMEN

Accumulation and concomitant risk of metals in plastic-shed soil (PSS)-vegetable system around industrial areas have attracted growing public concern recently, while limited studies have focused on human bioaccessible metals in various plastic-shed vegetables and health risk calculated using bioaccessible metals. Previous studies showed that intensive farming and industrial activities could prominently affect metal migration from PSS to vegetables via altering PSS pH, total and bioavailable metal contents. In contrast, whether changes in PSS pH and metal contents control bioaccessible metals in vegetables and health risk is still unknown. For PSS management and sustainable plastic-shed vegetable production in the areas with rapid industrialization, 41 PSS and 32 plastic-shed vegetable samples were sampled from the industrial areas of Yangtze River Delta, China to systematically clarify the specific connections among anthropogenic activities, soil pH and metal contents, and metal transfer and health risk in PSS-vegetable-human system. The results indicated that Cr and Cd contents in 15.6% and 9.38% of vegetable samples exceeded the allowable limits in China. Tolerable cancer risk existed and was mainly induced by bioaccessible Cr in vegetables. Decreased PSS pH mainly caused by heavy use of nitrogen fertilizers increased bioavailable Ni, Cd, Zn, Pb, and Cu in PSS and subsequently enhanced their total and bioaccessible contents in vegetables. Prominent Cr accumulation in PSS induced by industrial wastewater irrigation exacerbated Cr uptake by vegetables, which increased bioaccessible Cr in vegetables and contributed greatly to cancer risk. To reduce transfer and health risk especially of Cd and Cr in the food chain, some appropriate measures related to source control and remediation should be proposed for preventing and mitigating PSS acidification and Cr accumulation.


Asunto(s)
Metales Pesados , Neoplasias , Contaminantes del Suelo , Efectos Antropogénicos , Cadmio , China , Monitoreo del Ambiente , Fertilizantes/análisis , Humanos , Concentración de Iones de Hidrógeno , Plomo , Metales Pesados/análisis , Nitrógeno , Plásticos , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis , Verduras/química , Aguas Residuales
17.
3 Biotech ; 12(7): 152, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35755800

RESUMEN

Increasing concentrations of ground-level ozone (O3) exert significant impacts on the plants, but there is limited data for belowground processes. We studied the effects of long-term exposure of elevated O3 (EO3) on plant growth parameters (plant height and biomass) and biochemical parameters (nutrients, microbial biomass and enzymatic activities) of rhizospheric soil of leguminous tree species Leucaena leucocephala. L. leucocephala seedlings were grown under ambient O3 (AO3) and EO3 (+20 ppb above ambient) under Free Air Ozone Concentration Enrichment (O3-FACE) facility and changes in plant growth and their rhizospheric soil properties were studied during 6, 12, 18 and 24 months of EO3 exposure. L. leucocephala showed significant reductions in shoot length, root biomass, shoot biomass, leaf biomass and total biomass during 12, 18 and 24 months of exposure to EO3. Total nutrients in rhizospheric soil like carbon and phosphorus were significantly reduced after 24 months of EO3 exposure. Most of the available nutrients showed significant reduction after 6, 12 and 24 months of EO3 exposure. A significant decrease was apparent in microbial biomass carbon, nitrogen and phosphorus after 6, 12, 18 and 24 months of EO3 treatment. Significant reductions were observed in extracellular enzymatic activities (dehydrogenase, alkaline phosphatase, ß-glycosidase, fluorescein diacetate, arylsulfatase, cellulase and protease) of soil after 6, 12 and 24 months of EO3 exposure. These results suggest that increasing O3 concentrations will directly impact L. leucocephala growth as well as have indirect impact on the nutrient contents (C, N, and P), microbial biomass and extracellular enzymatic activities of rhizospheric soil of L. leucocephala. Our results suggest that continuous increase in O3 concentrations will have serious implications for aboveground plant growth and belowground soil fertility in this region considered as O3 hotspot. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03215-1.

18.
Materials (Basel) ; 14(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576355

RESUMEN

The purpose of this paper is to describe the variability of soil rheological properties based on research carried out using load tests of ground anchors under complex geotechnical conditions. The heterogeneity of soil should always be considered when designing geotechnical constructions. In the present case, the earthwork created at the Warsaw Slope revealed an embankment of anthropogenic origin, located in a geologically and geomorphologically complex area of the Vistula valley slope. Excavation protection was anchored mainly in soils of anthropogenic origin. When the acceptance tests of the ground anchor were completed, the subsoil randomness was confirmed using nondirect, geostatistical methods. A standard solid rheological model with nonlinear fitting to the data was used. This model was established to describe the creeping activity of the ground anchor more accurately. The characteristics of man-made embankments were described using the parameters obtained with the rheological model of the subsoil.

19.
Sensors (Basel) ; 21(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208632

RESUMEN

The paper presents the contemporary displacement measurement systems used in geotechnical laboratories during the determination of soil precise mechanical parameters, e.g., the shear modules G: initial and in the range of small and very small strains. In the laboratory, researchers use standard sensors for measuring deformation, pressure, and force as well as modern measuring systems such as linear variable differential transformers (LVDT), proximity transducers (PT), magnetic encoder sensors with fiber Bragg grating (FBG), or methods based on laser or X-ray measurement. None of the measurements are universal and their use depends on the type of soil (cohesive, non-cohesive), its condition (loose or dense, stiff or very soft), and its characteristic properties (e.g., organic soil, swelling soil). This study points out the interesting equipment solutions and presents the guidelines for selecting appropriate methods of deformation measurement.

20.
Plants (Basel) ; 10(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810174

RESUMEN

Recent studies revealed that from various ecological factors influencing nectar yield and quality of a plant, soil properties can be as important as microclimatic features. To date, few studies have investigated the relationship of soil characters to nectar traits of bee pollinated plants growing in natural associations. Our study intended to reveal which soil properties had the most powerful impact on nectar variables of wild garlic (Allium ursinum L.). Specimens were collected from fourteen habitats in two different years, and were potted in their original soil under the same climatic conditions. Nectar volumes and sugar concentrations were measured and soil samples were analysed for fourteen parameters. Statistical analyses revealed that the number of nectar producing Allium flowers, as well as the nectar volume and sugar content of nectar in individual flowers were influenced by both year and habitat. The humus, iron and sulphate content of soil showed negative correlation with the number of flowers producing nectar; total nectar volumes were negatively correlated with humus and iron content, but positively affected by magnesium content of the soil. Our results suggest that in addition to the effect of microclimatic factors, certain soil properties can have significant impact on nectar traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA