Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
ISME J ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236233

RESUMEN

Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.

2.
J Hazard Mater ; 479: 135574, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39197278

RESUMEN

Tire wear particles (TWPs) pollution is widely present in soil, especially in areas severely affected by traffic. Herein, regular variation of fungal biomass with TWPs was found in soils with different distances from the highway. In addition, the concentrations of benzothiazole compounds (BTHs), an important class of rubber vulcanization accelerators, were found to be positively correlated to the TWPs abundance. Sixty days' soil microcosm experiments were conducted to further confirm the adverse effect of TWPs and BTHs on soil fungi. TWPs spiking at 1000 mg/kg, a detectable level in the roadside, resulted in significant reduction of biomass and significant changes of soil fungal community structure, with Eurotium and Polyporales being the sensitive species. BTH+ 2-hydroxybenzothiazole (OHBT) (the dominant BTHs in soil) spiking at 200 ng/kg, the dose equivalent to 1000 mg/kg TWPs pollution, also caused a similar magnitude of soil fungal biomass reduction. Adonis demonstrated no significant difference of fungal community structure between TWPs and BTH+OHBT spiked soil, suggesting the adverse effect of TWPs on soil fungi may be explained by the act of BTHs. Pure culture using the representative soil fungi Eurotium and Polyporales also confirmed that BTHs were the main contributors to the adverse effect of TWPs on soil fungi.


Asunto(s)
Benzotiazoles , Hongos , Goma , Microbiología del Suelo , Contaminantes del Suelo , Hongos/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Biomasa
3.
Front Microbiol ; 15: 1404633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027108

RESUMEN

Overgrazing and climate change are the main causes of grassland degradation, and grazing exclusion is one of the most common measures for restoring degraded grasslands worldwide. Soil fungi can respond rapidly to environmental stresses, but the response of different grassland types to grazing control has not been uniformly determined. Three grassland types (temperate desert, temperate steppe grassland, and mountain meadow) that were closed for grazing exclusion for 9 years were used to study the effects of grazing exclusion on soil nutrients as well as fungal community structure in the three grassland types. The results showed that (1) in the 0-5 cm soil layer, grazing exclusion significantly affected the soil water content of the three grassland types (P < 0.05), and the pH, total phosphorous (TP), and nitrogen-to-phosphorous ratio (N/P) changed significantly in all three grassland types (P < 0.05). Significant changes in soil nutrients in the 5-10 cm soil layer after grazing exclusion occurred in the mountain meadow grasslands (P < 0.05), but not in the temperate desert and temperate steppe grasslands. (2) For the different grassland types, Archaeorhizomycetes was most abundant in the montane meadows, and Dothideomycetes was most abundant in the temperate desert grasslands and was significantly more abundant than in the remaining two grassland types (P < 0.05). Grazing exclusion led to insignificant changes in the dominant soil fungal phyla and α diversity, but significant changes in the ß diversity of soil fungi (P < 0.05). (3) Grazing exclusion areas have higher mean clustering coefficients and modularity classes than grazing areas. In particular, the highest modularity class is found in temperate steppe grassland grazing exclusion areas. (4) We also found that pH is the main driving factor affecting soil fungal community structure, that plant coverage is a key environmental factor affecting soil community composition, and that grazing exclusion indirectly affects soil fungal communities by affecting soil nutrients. The above results suggest that grazing exclusion may regulate microbial ecological processes by changing the soil fungal ß diversity in the three grassland types. Grazing exclusion is not conducive to the recovery of soil nutrients in areas with mountain grassland but improves the stability of soil fungi in temperate steppe grassland. Therefore, the type of degraded grassland should be considered when formulating suitable restoration programmes when grazing exclusion measures are implemented. The results of this study provide new insights into the response of soil fungal communities to grazing exclusion, providing a theoretical basis for the management of degraded grassland restoration.

4.
Sci Rep ; 14(1): 15211, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956076

RESUMEN

Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.


Asunto(s)
Nanopartículas del Metal , Plata , Microbiología del Suelo , Plata/química , Plata/farmacología , Arabia Saudita , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Clima Desértico , Hongos/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química
5.
Front Plant Sci ; 15: 1408272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855467

RESUMEN

Soil fungi play a critical role in the biogeochemical cycles of forest ecosystems. Larix gmelinii is a strong and important timber tree species, which forms close associations with a wide range of soil fungi. However, the temporal-spatial disparity effects on the assembly of soil fungal communities in L. gmelinii forests are poorly understood. To address these questions, a total of 120 samples, including 60 bulk soil and 60 root samples, were collected from Aershan and Genhe in July (summer) and October (autumn)2021. We obtained 7,788 operational taxonomic units (OTUs) after merging, filtering, and rarefying using high-throughput sequencing. The dominant phyla are Basidiomycota, Ascomycota, Mortierellomycota, and Mucoromycota. There were 13 dominant families, among which the families with average relative abundance more than 5% included Thelephoraceae, Mortierellaceae, Archaeorhizomycoaceae, and Inocybaceae. In the functional guilds, symbiotrophic fungi had a relative advantage in the identified functions, and the relative abundances of pathotrophic and saprotrophic fungi varied significantly between sites. There were 12 families differentially expressed across compartments, 10 families differentially expressed between seasons, and 69 families were differentially expressed between sites. The variation in alpha diversity in the bulk soil was greater than that in the rhizosphere soil. Among the three parts (compartment, season, and site), the site had a crucial effect on the beta diversity of the fungal community. Deterministic processes dominated fungal community assembly in Genhe, whereas stochastic processes dominated in Aershan. Soil physicochemical properties and climatic factors significantly affected fungal community structure, among which soil total nitrogen and pH had the greatest effect. This study highlights that spatial variations play a vital role in the structure and assembly of soil fungal communities in L. gmelinii forests, which is of great significance for us in maintaining the health of the forests.

6.
Sci Rep ; 14(1): 14160, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898096

RESUMEN

Continuous cultivation of tobacco could cause serious soil health problems, which could cause bacterial soil to change to fungal soil. In order to study the diversity and richness of fungal community in tobacco-growing soil under different crop rotation, three treatments were set up in this study: CK (tobacco continuous cropping); B (barley-tobacco rotation cropping) and R (oilseed rape-tobacco rotation cropping). The results of this study showed that rotation with other crops significantly decreased the soil fungal OTUs, and also decreased the community richness, evenness, diversity and coverage of fungal communities. Among them, B decreased the most. In the analysis of the composition and structure of the fungal community, it was found that the proportion of plant pathogens Nectriaceae decreased from 19.67% in CK to 5.63% in B, which greatly reduced the possibility of soil-borne diseases. In the analysis of the correlation between soil environmental factors and fungal communities, it was found that Filobasidiaceae had a strong correlation with TP and AP, and Erysiphaceae had a strong correlation with TK and AK. NO3--N and NH4+-N were the two environmental factors with the strongest correlation with fungal communities. The results of this study showed that rotation with other crops slowed down the process of soil fungi in tobacco-growing soil and changed the dominant species of soil fungi community. At the same time, crop rotation changed the diversity and richness of soil fungal community by changing the physical and chemical properties of soil.


Asunto(s)
Productos Agrícolas , Hongos , Nicotiana , Microbiología del Suelo , Suelo , Nicotiana/microbiología , Nicotiana/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Suelo/química , Agricultura/métodos , Biodiversidad
7.
BMC Plant Biol ; 24(1): 582, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898415

RESUMEN

BACKGROUND: Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS: This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS: Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.


Asunto(s)
Arachis , Microbiología del Suelo , Arachis/microbiología , Arachis/genética , Micobioma , Hongos/fisiología , Hongos/genética , Florida , Rizoma/microbiología , Filogenia
8.
Sci Total Environ ; 942: 173718, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38848925

RESUMEN

Arbuscular mycorrhizal fungi (AMF) have a broad distribution and establish symbiotic relationships with vascular plants in tropical regions. They play a crucial role in enhancing plant nutrient absorption, mitigating pathogenic infections, and boosting the resilience of host plants to abiotic stresses, including drought under specific conditions. Many natural forests in Ethiopia are being replaced by monospecific plantations. However, the impact of these actions on AMF is unknown and, despite their ecological functions, AMF communities in various forest systems have not been thoroughly investigated. In this study, we assessed soil AMF communities in natural and plantation forests by DNA metabarcoding of the ITS2 rDNA region and assessed the influence of climate and environmental variables on the AMF community. In total, 193 AMF operational taxonomic units (OTUs), comprising nine families and 15 genera, were recorded. Glomerales was the dominant order (67.9 % of AMF OTUs) and Septoglomus fuscum, Diversispora insculpta, and Funneliformis mosseae were the dominant species. AMF were more abundant in natural forests than in plantation forests and the composition of AMF communities differed significantly from those of plantation forest. In plantation forests, soil pH, organic carbon, total nitrogen, and available phosphorus significantly influenced the composition of AMF communities, whereas in natural forest, electrical conductivity, annual rainfall, and cumulative rainfall before sample collection were significantly correlated with AMF. SIMPER analysis identified the AMF responsible for composition variances among different forest types, with the Glomeraceae family being the most significant contributor, accounting for nearly 60 % of the dissimilarity. Our findings further our understanding of the ecological niche function and the role of AMF in Ethiopia's natural forest systems and highlight the importance of prioritizing the sustainable development of degraded natural forests rather than plantations to ensure the preservation of habitats conducive to maintaining various AMF communities when devising conservation and management strategies.


Asunto(s)
Bosques , Micorrizas , Microbiología del Suelo , Árboles , Micorrizas/fisiología , Etiopía , Árboles/microbiología , Suelo/química
9.
Microorganisms ; 12(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38792806

RESUMEN

Revealing the biogeography and community assembly mechanisms of soil microorganisms is crucial in comprehending the diversity and maintenance of Pinus sylvestris var. mongolica forests. Here, we used high-throughput sequencing techniques and null model analysis to explore the distribution patterns and assembly processes of abundant, rare, and total fungal communities in P. sylvestris var. mongolica forests based on a large-scale soil survey across northern China. Compared to the abundant and total taxa, the diversity and composition of rare taxa were found to be more strongly influenced by regional changes and environmental factors. At the level of class, abundant and total taxa were dominated by Agaricomycetes and Leotiomycetes, while Agaricomycetes and Sordariomycetes were dominant in the rare taxa. In the functional guilds, symbiotrophic fungi were advantaged in the abundant and total taxa, and saprotrophic fungi were advantaged in the rare taxa. The null model revealed that the abundant, rare, and total taxa were mainly governed by stochastic processes. However, rare taxa were more influenced by deterministic processes. Precipitation and temperature were the key drivers in regulating the balance between stochastic and deterministic processes. This study provides new insights into both the biogeographical patterns and assembly processes of soil fungi in P. sylvestris var. mongolica forests.

10.
Mycobiology ; 52(2): 111-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690028

RESUMEN

The fungal strain designated as KNUF-21-020, belonging to the genus Triangularia, was isolated from a soil sample collected in the Chungnam province, Korea. Phylogenetic analyses based on the concatenated nucleotide sequences of internal transcribed spacer regions and partial sequences of large subunit rRNA, beta-tubulin, and RNA polymerase II subunit genes revealed that the strain was grouped in a clade with Triangularia species. However, it occupied a distinct phylogenetic position. We also observed morphological differences between strain KNUF-21-020 and closely related species. Here, we provided detailed descriptions, illustrations, and discussions regarding the morphological and phylogenetic analyses of the closely related species to support the novelty of this isolated species. The phylogenetic analyses and morphological observations indicate that the strain KNUF-21-020 represents a novel species in the genus Triangularia (family: Podosporaceae). We have designated this species as Triangularia manubriata sp. nov.

11.
Braz J Microbiol ; 55(2): 1625-1634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652442

RESUMEN

Antarctic soils represent one of the most pristine environments on Earth, where highly adapted and often endemic microbial species withstand multiple extremes. Specifically, fungal diversity is extremely low in Antarctic soils and species distribution and diversity are still not fully characterized in the continent. Despite the unique features of this environment and the international interest in its preservation, several factors pose severe threats to the conservation of inhabiting ecosystems. In this light, we aimed to provide an overview of the effects on fungal communities of the main changes endangering the soils of the continent. Among these, the increasing human presence, both for touristic and scientific purposes, has led to increased use of fuels for transport and energy supply, which has been linked to an increase in unintentional environmental contamination. It has been reported that several fungal species have evolved cellular processes in response to these soil contamination episodes, which may be exploited for restoring contaminated areas at low temperatures. Additionally, the effects of climate change are another significant threat to Antarctic ecosystems, with the expected merging of previously isolated ecosystems and their homogenization. A possible reduction of biodiversity due to the disappearance of well-adapted, often endemic species, as well as an increase of biodiversity, due to the spreading of non-native, more competitive species have been suggested. Despite some studies describing the specialization of fungal communities and their correlation with environmental parameters, our comprehension of how soil communities may respond to these changes remains limited. The majority of studies attempting to precisely define the effects of climate change, including in situ and laboratory simulations, have mainly focused on the bacterial components of these soils, and further studies are necessary, including the other biotic components.


Asunto(s)
Biodiversidad , Cambio Climático , Hongos , Microbiología del Suelo , Regiones Antárticas , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Ecosistema , Suelo/química , Micobioma
12.
Fungal Biol ; 128(2): 1724-1734, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575246

RESUMEN

The ectomycorrhizal fungi Tuber melanosporum Vittad. and Tuber aestivum Vittad. produce highly valuable truffles, but little is known about the soil fungal communities associated with these truffle species in places where they co-occur. Here, we compared soil fungal communities present in wild and planted truffle sites, in which T. melanosporum and T. aestivum coexist, in Mediterranean and temperate regions over three sampling seasons spanning from 2018 to 2019. We showed that soil fungal community composition and ectomycorrhizal species composition are driven by habitat type rather than climate regions. Also, we observed the influence of soil pH, organic matter content and C:N ratio structuring total and ectomycorrhizal fungal assemblages. Soil fungal communities in wild sites revealed more compositional variability than those of plantations. Greater soil fungal diversity was found in temperate compared to Mediterranean sites when considering all fungal guilds. Ectomycorrhizal diversity was significantly higher in wild sites compared to plantations. Greater mould abundance at wild sites than those on plantation was observed while tree species and seasonal effects were not significant predictors in fungal community structure. Our results suggested a strong influence of both ecosystem age and management on the fungal taxa composition in truffle habitats.


Asunto(s)
Micobioma , Micorrizas , Ecosistema , Suelo , Árboles , Microbiología del Suelo
13.
Int Microbiol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506948

RESUMEN

Ten fungal species were isolated from soil in the Western Desert and Wadi El-Natron in Egypt. All fungal isolates were morphologically recognized down to the species level. Methanol extracts of fungal mycelia and ethyl acetate extracts of culture filtrate from the isolated fungi were evaluated for antimicrobial activity against six pathogenic bacteria and one pathogenic yeast (Candida albicans ATCC20231). Only ethyl acetate extracts of Fusarium circinatum, Aspergillus niger, and Aspergillus terreus culture filtrates showed significant antimicrobial activity against the majority of the investigated pathogens. The culture filtrate extract of Aspergillus niger exhibited notable cytotoxicity towards the breast cancer (MCF-7) cell line, with the lowest detected IC50 recorded at 8 µg/µl. Whereas Fusarium circinatum and Aspergillus terreus had IC50s of 15.91 µg/µl and 18 µg/µl, respectively. A gas chromatography-mass spectroscopy (GC-MS) investigation of A. niger's potent extract revealed 23 compounds with different biological activities. Glycidyleoleate was found to be the main extract component. Aspergillus niger extract was chosen to study its possible cytotoxic mechanism. The extract was found to induce apoptosis and cell cycle arrest at the < 2n stage. Despite a significant increase in caspases 8 and 9, the production levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) have shown a significant decrease. The high interaction of glycidyleoleate against the studied cytokines' binding receptors was demonstrated via docking studies. In conclusion, the available data revealed that the culture filtrate extract of A. niger possesses promising antimicrobial, cytotoxic, and immunomodulatory properties.

14.
3 Biotech ; 14(3): 79, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38371901

RESUMEN

The diversity, composition, and abundance of soil fungi from three sacred groves in Kerala, namely Iringole kavu of Ernakulam District, Kollakal Thapovanam of Alappuzha District, and Poyilkavu of Kozhikode District were analysed using Metagenomics analysis and Illumina sequencing. A total of 30,584, 78,323, and 55,640 reads were obtained from these groves, respectively. Ascomycota constitutes over 96% of the total fungi, making it the most abundant phylum, followed by Mortierellomycota, Basidiomycota, Chytridiomycota, and Rozellomycota. These phyla were subdivided into 20 classes, 40 orders, 83 families, 119 genera, and 135 species, while 1269 OTUs remained unidentified at the species level. Eurotiomycetes predominates the class, while the genus Talaromyces from the family Trichomaceae dominates the genera. Neocarmospora falciformis, Trichoderma lixii, and Candida ethanolic are the most abundant fungal species. Diversity analysis shows that Kollakal Thapovanam is rich in fungal species, while Poyilkavu is rich in biodiversity, with a high degree of dominance. Several species were found only in a particular grove and were absent in others and vice-versa, indicating high fungal specificity. Therefore, fungi have to be preserved in their original habitat. The Principal Coordinate Analysis revealed that each grove is distinct highlighting the importance of preserving the unique diversity of each sacred grove. In conclusion, this research provides valuable information about the soil fungal genera in their natural habitat. It emphasizes the need for more systematic research to understand the actual diversity and ecological role of fungi in sacred groves. This study is the first of its kind to analyse and compare soil fungal diversity in sacred groves using the metagenomics approach.

15.
Microbiol Res ; 281: 127621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295679

RESUMEN

Trichoderma spp. are free-living fungi present in virtually all terrestrial ecosystems. These soil fungi can stimulate plant growth and increase plant nutrient acquisition of macro- and micronutrients and water uptake. Generally, plant growth promotion by Trichoderma is a consequence of the activity of potent fungal signaling metabolites diffused in soil with hormone-like activity, including indolic compounds as indole-3-acetic acid (IAA) produced at concentrations ranging from 14 to 234 µg l-1, and volatile organic compounds such as sesquiterpene isoprenoids (C15), 6-pentyl-2H-pyran-2-one (6-PP) and ethylene (ET) produced at levels from 10 to 120 ng over a period of six days, which in turn, might impact plant endogenous signaling mechanisms orchestrated by plant hormones. Plant growth stimulation occurs without the need of physical contact between both organisms and/or during root colonization. When associated with plants Trichoderma may cause significant biochemical changes in plant content of carbohydrates, amino acids, organic acids and lipids, as detected in Arabidopsis thaliana, maize (Zea mays), tomato (Lycopersicon esculentum) and barley (Hordeum vulgare), which may improve the plant health status during the complete life cycle. Trichoderma-induced plant beneficial effects such as mechanisms of defense and growth are likely to be inherited to the next generations. Depending on the environmental conditions perceived by the fungus during its interaction with plants, Trichoderma can reprogram and/or activate molecular mechanisms commonly modulated by IAA, ET and abscisic acid (ABA) to induce an adaptative physiological response to abiotic stress, including drought, salinity, or environmental pollution. This review, provides a state of the art overview focused on the canonical mechanisms of these beneficial fungi involved in plant growth promotion traits under different environmental scenarios and shows new insights on Trichoderma metabolites from different chemical classes that can modulate specific plant growth aspects. Also, we suggest new research directions on Trichoderma spp. and their secondary metabolites with biological activity on plant growth.


Asunto(s)
Arabidopsis , Etilenos , Trichoderma , Ecosistema , Trichoderma/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Suelo , Raíces de Plantas/microbiología
16.
Sci Total Environ ; 913: 169417, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38143005

RESUMEN

Livestock grazing alters the diversity and composition of plants and soil biota in grassland ecosystems. However, whether and how grazing affects plant-soil biota interactions are limited. Here, we performed a field investigation on the Tibetan grasslands to determine the relationships between plant community properties (biomass, diversity and richness) and soil biota (abundance, diversity and composition of bacteria, fungi and nematodes) in the long-term yak grazing and ungrazed plots, and responses of plant-soil biota linkages to grazing in alpine meadows and alpine swampy meadows were compared. The results found that grazing did not cause significant changes in plant community properties but increased the soil water content. Further, grazing weakened plant-soil microbes/nematode relationships in alpine meadows. The bacterial and fungal abundances were correlated with plant belowground biomass and Simpson index in the ungrazed plots of alpine meadows, while the correlation was not significant under grazing. Bacterial composition was correlated with plant richness only in the ungrazed meadows. Plant-soil nematode linkages were more sensitive to grazing than plant-microbes linkages. Grazing decoupled the relationships between the abundances of nematode trophic groups and plant aboveground biomass, richness and Simpson index in alpine meadows, while the decoupling phenomenon is less evident in alpine swampy meadows. The SEM results indicate that grazing altered the plant above- and belowground biomass to affect the soil nematode community, while influenced soil microbes only through alterations of plant belowground biomass. The findings highlight the importance of grazing in influencing the interactions between aboveground plant communities and soil biological communities in Tibetan grasslands.


Asunto(s)
Ecosistema , Nematodos , Animales , Pradera , Suelo , Biota , Biomasa , Plantas , Nematodos/fisiología
17.
J Fungi (Basel) ; 9(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38132751

RESUMEN

Penicillium species are ubiquitous in all kinds of environments, and they are of industrial, agricultural and clinical importance. In this study, soil fungal diversity in Southwestern China was investigated, and that of Penicillium turned out to be unexpectedly high. The survey included a total of 179 cultures of the genus isolated from 33 soil samples. Three-locus phylogenetic analyses and morphological comparisons were carried out. The examinations revealed that they belonged to two subgenera (Aspergilloides and Penicillium), 11 sections (Aspergilloides, Canescentia, Citrina, Exilicaulis, Fasciculata, Gracilenta, Lanata-Divaricata, Penicillium, Ramosum, Robsamsonia, and Sclerotiorum), 25 series, and 74 species. Forty-three species were discovered as new to science, and a new series, Simianshanica, was established in sect. Aspergilloides. Additionally, 11 species were recorded for the first time in China. Species isolation frequency and distribution of the group were also discussed.

18.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37998918

RESUMEN

Fungi have important ecological functions in the soil of forests, where they decompose organic matter, provide plants with nutrients, increase plant water uptake, and improve plant resistance to adversity, disease, and disturbance. A forest fire presents a serious disturbance of the local ecosystem and can be considered an important component affecting the function of ecosystem biomes; however, the response of soil fungi to fire disturbance is largely unknown. To investigate the effects of fire disturbance on the community composition and diversity of soil fungi in a taiga forest, we collected soil from plots that had undergone a light, moderate, and heavy fire 10 years previously, with the inclusion of a fire-free control. The present soil fungi were characterized using Illumina MiSeq technology, and the sequences were analyzed to identify differences in the community composition and diversity in response to the changed soil physicochemical properties. The results showed that the Chao1 index, which characterizes the alpha diversity of the fungi, did not change significantly. In contrast, the Shannon index increased significantly (p < 0.05) and the Simpson index decreased significantly (p < 0.05) following a light or heavy fire disturbance compared to the control. The relative abundance of Basidiomycota was significantly higher in the soil of the fire sites than that in the control (p < 0.01), and the relative abundance of Ascomycota was significantly lower (p < 0.01). The results of principal coordinates analyses (PCoAs) showed that fire disturbance highly significantly affected the beta diversity of soil fungi (p < 0.001), while the results of canonical correlation analysis (CCA) indicated that the available nitrogen (AN), moisture content (MC), pH, available potassium (AK), and total nitrogen (TN) contents of the soil significantly affected the compositional structure and diversity of the soil fungal communities. The results of functional prediction showed that the majority of the detected soil fungi were symbiotrophs, followed by saprotrophs and saprotroph-symbiotrophs, with ectomycorrhiza being the dominant functional taxon. Fire disturbance significantly reduced the relative abundance of ectomycorrhiza (p < 0.05). This study illustrates that fire disturbance alters the structural composition, diversity, dominance, and relative abundance of the guilds of soil fungal communities in taiga forest, and strongly affected the beta diversity of soil fungi, with AN, MC, pH, AK, and TN being the most important factors affecting their community structure. The results may provide a useful reference for the restoration and rehabilitation of taiga forests after fire disturbance.

19.
Plants (Basel) ; 12(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896093

RESUMEN

Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.

20.
Sci Total Environ ; 904: 166758, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673251

RESUMEN

Afforestation currently makes a great contribution to carbon uptake in terrestrial ecosystems, while dramatically affects soil ecosystem functions too. Little is known, however, about the changes in soil fungal functional groups and their interactions following afforestation. Here, based on high-throughput sequencing and FUNGuild annotation, we investigated the functional characteristics of soil fungi as well as environmental factors in a watershed where paddy field and dry farmland were changed to eucalyptus plantation. The results showed that afforestation on paddy field resulted in greater changes in diversity, community structure and taxon interactions of fungal functional groups than afforestation on dry farmland. The most complex and distinctive community structure was found in eucalyptus plantation, as well as the greatest taxon interactions, and the lowest alpha-diversity of functional guilds of symbiotrophic fungi because of the dominant ectomycorrhizal fungi. Paddy field exhibited the highest proportion of saprotrophic fungi, but the lowest taxonomic diversity of saprotrophic and pathotrophic fungi. The taxonomic diversity of undefined saprotrophic fungi shaped the differences in community structure and network complexity between eucalyptus plantation and cropland. Limited cooperation within dominant fungi was the main reason for the establishment of a loose co-occurrence network in paddy field. From croplands to artificial forests, reduced soil pH boosted the taxonomic diversity of fungal functional groups. All of these findings suggested that afforestation may lead to an increase in the taxonomic diversity of soil fungal functional groups, which would further intensify the taxon interactions.


Asunto(s)
Ecosistema , Micorrizas , Granjas , Hongos , Microbiología del Suelo , Suelo/química , Bosques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA