Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 101-110, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137559

RESUMEN

Sodium-selenium (Na-Se) batteries are promising energy storage systems with high energy density, high safety, and low cost. However, the huge volume change of selenium, the dissolution shuttle of polyselenides, and low selenium loading need to be solved. Herein, Cu nanoparticles decorated MXene nanosheets composite (MXene/Cu) are synthesized by etching Ti3AlC2 using a molten salt etching strategy. The Se-loaded MXene/Cu (Se@MXene/Cu) electrode delivers superior electrochemical performance even with a high Se loading of ∼74.3 wt%, owing to the synergistic effect of the two-dimensional (2D) confined structure and catalytic role of the unique MXene/Cu host. Specifically, the obtained electrode provides a reversible capacity of 587.3 mAh/g at 0.2 A/g, a discharge capacity as high as 511.3 mAh/g at a high rate of 50 A/g, and still maintains a capacity of 471.9 mAh/g even after 5000 cycles based on the mass of Se@MXene/Cu. With such excellent electrochemical kinetic properties, this study highlights the importance of designing various MXene-based composites with synergistic effects of 2D confined structure and Cu catalytic center for the development of high-performance alkali metal-chalcogen battery systems.

2.
ChemSusChem ; 17(2): e202300998, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37721954

RESUMEN

With their high volumetric capacity and electronic conductivity, sodium-selenium (Na-Se) batteries have attracted attention for advanced battery systems. However, the irreversible deposition of sodium selenide (Na2 Se) results in rapid capacity degradation and poor Coulombic efficiency. To address these issues, cubic α-Mn2 O3 is introduced herein as an electrocatalyst to effectively catalyze Na2 Se conversion and improve the utilization of active materials. The results show that the addition of 10 wt% Mn2 O3 in the selenium/Ketjen black (Se/KB) composite enhances the conversion from Na2 Se to Se by lowering activation energy barrier and leads to fast sodium-ion kinetics and low internal resistance. Consequently, the Mn2 O3 -based composite delivers a high specific capacity of 635 mAh ⋅ g-1 at 675 mA ⋅ g-1 after 250 cycles as well as excellent cycling stability for 800 cycles with a high specific capacity of 317 mAh ⋅ g-1 even at the high current density of 3375 mA ⋅ g-1 . Due to the cubic Mn2 O3 electrocatalyst, the performance of the composites is superior to existing state-of-the-art Na-Se batteries reported in the literature.

3.
J Colloid Interface Sci ; 617: 641-650, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35305476

RESUMEN

Sodium-ion battery (SIB) has attracted extensive research attention owing to its high theoretical capacity and low cost. Herein, we synthesize bio-waste-derived activated carbon (BAC) through a facile synthesis process followed by selenium loading (using melt-infusion method) to form BAC@Se composites. The synthesized BAC and its composite BAC@Se revealed excellent rate performance, great cycling stability, and good reversibility. The BAC revealed a maximum specific capacity of 257 mAh/g at 20 mA/g current density. The BAC@Se showed the maximum specific capacity of 701 mAh/g at 50 mA/g current density (equivalent to a specific energy of about 1051 WhKg-1/75 WKg-1) and good rate performance with 226 mAh/g specific capacity at a high current density of 2500 mA/g. Moreover, the composite revealed good cycling stability by retaining 348 mAh/g capacity at 500 mA/g after 500 cycles. The excellent electrochemical properties were attributed to the unique design of composites, which not only provided the physio-chemically trapped selenium but also ensure the fast kinetics of Na ions through interconnected 3-D channels and high restrain against the dissolution of polyselenides into an electrolyte. This work may shed light on recycling different bio-wastes into energy materials for energy storage devices.

4.
Small ; 16(48): e2005534, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33150721

RESUMEN

Sodium-selenium (Na-Se) battery has been emerging as one of the most prospective energy storage systems owing to their high volumetric energy density and cost effectiveness. Nevertheless, the shuttle effect of sodium polyselenide (NaPSe) and sluggish electrochemical reaction kinetics present the main bottlenecks for its practical implementation. Herein, a new Se host of 3D nitrogen-doped hierarchical multicavity carbon nanospheres (3D NHMCs) is designed and synthesized via a facile self-sacrifice templating strategy. The 3D NHMCs are verified to hold a favorable structure of a hollow macropore core and numerous micro/mesopores hollow shell for hosting Se, which can not only maximize Se utilization and alleviate the volumetric expansion but also promote the electrical/ionic conductivity and electrolyte infiltration. Moreover, the abundant self-functionalized surfaces as an efficient NaPSe scavenger via robust physical-chemical dual blocking effects demonstrate high-efficiency in situ anchoring-diffusion-conversion of NaPSe, rendering rapid reaction kinetics and remarkable suppressive shuttle effect, as evidenced by systematic experimental analysis and density functional theory calculations. As a result, the high-Se-loading 3D NHMCs/Se cathode exhibits an ultrahigh volumetric capacity (863 mAh cm-3 ) and rate capability (377 mAh g-1 at 20 C) and unexceptionable stability over 2000 cycles at 2 C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA