Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioorg Chem ; 153: 107813, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39278065

RESUMEN

A series of 1,2,3-triazole derivatives targeting the PD-1/PD-L1 pathway were designed, synthesized, and evaluated both in vitro and in vivo. Among them, compound III-4 demonstrated exceptional inhibitory activity against the interaction of PD-1/PD-L1 and showed great binding affinity with hPD-L1, with an IC50 value of 2.9 nM and a KD value of 3.33 nM. In the co-culture of Hep3B/OS-8/hPD-L1 cells and CD3+ T cells assay, III-4 relieved the inhibition of PD-L1 on PD-1 and promoted the expression of IFN-γ, which shared a comparable effect to that of the PD-1 monoclonal antibody Pembrolizumab (5 µg/mL). Moreover, compound III-5, an ester prodrug derived from III-4, demonstrated significant antitumor effects in the hPD-L1-MC38 C57BL/6 mouse model (TGI: 49.6 %) by oral administration. These findings suggest that compound III-5 holds promise as an inhibitor of the PD-1/PD-L1 interaction for cancer immunotherapy.

2.
Biochem Pharmacol ; 226: 116342, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38848777

RESUMEN

Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Sarcoma , Transcripción Genética , Humanos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Sarcoma/genética , Sarcoma/tratamiento farmacológico , Sarcoma/metabolismo , Sarcoma/patología , Sarcoma/terapia , Animales , Regulación Neoplásica de la Expresión Génica , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
3.
Eur J Med Chem ; 271: 116414, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677061

RESUMEN

Sclerostin is a secreted glycoprotein that expresses predominantly in osteocytes and inhibits bone formation by antagonizing the Wnt/ß-catenin signaling pathway, and the loop3 region of sclerostin has recently discovered as a novel therapeutic target for bone anabolic treatment without increasing cardiovascular risk. Herein, we used a structural based virtual screening to search for small molecular inhibitors selectively targeting sclerostin loop3. A novel natural product hit ZINC4228235 (THFA) was identified as the sclerostin loop3-selective inhibitor with a Kd value of 42.43 nM against sclerostin loop3. The simplification and derivation of THFA using molecular modeling-guided modification allowed the discovery of an effective and loop3-selective small molecular inhibitor, compound (4-(3-acetamidoprop-1-yn-1-yl)benzoyl)glycine (AACA), with improved binding affinity (Kd = 15.4 nM) compared to the hit THFA. Further in-vitro experiment revealed that compound AACA could attenuate the suppressive effect of transfected sclerostin on Wnt signaling and bone formation. These results make AACA as a potential candidate for development of anti-osteoporosis agents without increasing cardiovascular risk.


Asunto(s)
Diseño de Fármacos , Osteoporosis , Osteoporosis/tratamiento farmacológico , Humanos , Relación Estructura-Actividad , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Estructura Molecular , Animales , Ratones , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Osteogénesis/efectos de los fármacos
4.
Front Immunol ; 15: 1335774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322265

RESUMEN

The tumor microenvironment (TME) is a heterogeneous ecosystem comprising cancer cells, immune cells, stromal cells, and various non-cellular components, all of which play critical roles in controlling tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), the core component of N 6-methyladenosine (m6A) writer, is frequently associated with abnormalities in the m6A epitranscriptome in different cancer types, impacting both cancer cells and the surrounding TME. While the impact of METTL3 on cancer cells has been extensively reviewed, its roles in TME and anti-cancer immunity have not been comprehensively summarized. This review aims to systematically summarize the functions of METTL3 in TME, particularly its effects on tumor-infiltrating immune cells. We also elaborate on the underlying m6A-dependent mechanism. Additionally, we discuss ongoing endeavors towards developing METTL3 inhibitors, as well as the potential of targeting METTL3 to bolster the efficacy of immunotherapy.


Asunto(s)
Metiltransferasas , Neoplasias , Microambiente Tumoral , Línea Celular Tumoral , Metiltransferasas/genética , ARN , Humanos , Neoplasias/genética
5.
Cancer Biol Ther ; 24(1): 2219470, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37272701

RESUMEN

As a catalytic subunit of the positive transcription elongation factor b (P-TEFb), cyclin-dependent kinase 9 (CDK9) has been demonstrated to contribute to carcinogenesis. This review focuses on the development of selective CDK9 inhibitors and proteolysis-targeting chimera (PROTAC) degraders. Twenty selective CDK9 inhibitors and degraders are introduced along with their structures, IC50 values, in vitro and in vivo experiments, mechanisms underlying their inhibitory effects, and combination regimens. NVP-2, MC180295, fadraciclib, KB-0742, LZT-106, and 21e have been developed mainly for treating solid tumors, and most of them work only on certain genotypes of solid tumors. Only VIP152 has been proven to benefit the patients with advanced high-grade lymphoma (HGL) and solid tumors in clinical trials. Continued efforts to explore the molecular mechanisms underlying the inhibitory effects, and to identify suitable tumor genotypes and combination treatment strategies, are crucial to demonstrate the efficacy of selective CDK9 inhibitors and degraders in tumor therapy.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Neoplasias , Humanos , Quinasa 9 Dependiente de la Ciclina/química , Quinasa 9 Dependiente de la Ciclina/genética , Factor B de Elongación Transcripcional Positiva , Neoplasias/tratamiento farmacológico
6.
Eur J Med Chem ; 256: 115468, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37207535

RESUMEN

Discovery of small-molecule inhibitors against programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis provides a promising alternative to overcome the inevitable defects of PD-1/PD-L1 monoclonal antibodies (mAbs). Here, we report a series of indanes as novel small-molecule inhibitors of PD-1/PD-L1 interaction. Thirty-one indanes were synthesized and the structure-activity relationships (SARs) demonstrated that conformational restriction with (S)-indane is superior in potency to inhibit the interaction of PD-1 and PD-L1. Compound D3 was found to be the most potent inhibitor with an IC50 value of 2.2 nM against PD-1/PD-L1 interaction. Cell-based assay showed that D3 significantly induced immune activity of peripheral blood mononuclear cells (PBMCs) against MDA-MB-231 cells and could restore the immune function of T cells by promoting secretion of the IFN-γ. The above results indicate that compound D3 is a promising PD-1/PD-L1 inhibitor that deserves further development.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Leucocitos Mononucleares , Relación Estructura-Actividad
7.
Front Pharmacol ; 14: 1073037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37050909

RESUMEN

Background: Pin1 is a member of the evolutionarily conserved peptidyl-prolyl isomerase (PPIase) family of proteins. Following phosphorylation, Pin1-catalyzed prolyl-isomerization induces conformational changes, which serve to regulate the function of many phosphorylated proteins that play important roles during oncogenesis. Thus, the inhibition of Pin1 provides a unique means of disrupting oncogenic pathways and therefore represents an appealing target for novel anticancer therapies. Methods: As Pin1 is conserved between yeast and humans, we employed budding yeast to establish a high-throughput screening method for the primary screening of Pin1 inhibitors. This effort culminated in the identification of the compounds HWH8-33 and HWH8-36. Multifaceted approaches were taken to determine the inhibition profiles of these compounds against Pin1 activity in vitro and in vivo, including an isomerization assay, surface plasmon resonance (SPR) technology, virtual docking, MTT proliferation assay, western blotting, cell cycle analysis, apoptosis analysis, immunofluorescence analysis, wound healing, migration assay, and nude mouse assay. Results: In vitro, HWH8-33 and HWH8-36 could bind to purified Pin1 and inhibited its enzyme activity; showed inhibitory effects on cancer cell proliferation; led to G2/M phase arrest, dysregulated downstream protein expression, and apoptosis; and suppressed cancer cell migration. In vivo, HWH8-33 suppressed tumor growth in the xenograft mice after oral administration for 4 weeks, with no noticeable toxicity. Together, these results show the anticancer activity of HWH8-33 and HWH8-36 against Pin1 for the first time. Conclusion: In summary, we identified two hit compounds HWH8-33 and HWH8-36, which after further structure optimization have the potential to be developed as antitumor drugs.

8.
Int J Oncol ; 62(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36601757

RESUMEN

With the development of precision medicine, targeted therapy has attracted extensive attention. Poly(ADP­ribose) polymerase inhibitors (PARPi) are critical clinical drugs designed to induce cell death and are major antitumor targeted agents. However, preclinical and clinical data have revealed the limitations of PARPi monotherapy. Therefore, their combination with other targeted drugs has become a research hotspot in tumor treatment. Recent studies have demonstrated the critical role of small molecular inhibitors in multiple haematological cancers and solid tumors via cellular signalling modulation, exhibiting potential as a combined pharmacotherapy. In the present review, studies focused on small molecular inhibitors targeting the homologous recombination pathway were summarized and clinical trials evaluating the safety and efficacy of combined treatment were discussed.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Terapia Combinada , Medicina de Precisión
9.
Cancers (Basel) ; 15(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36672500

RESUMEN

The p21 Activated Kinases (PAKs) are serine threonine kinases and play important roles in many biological processes, including cell growth, survival, cytoskeletal organization, migration, and morphology. Recently, PAKs have emerged in the process of liver disorders, including liver cancer, hepatic ischemia-reperfusion injury, hepatitis, and liver fibrosis, owing to their effects in multiple signaling pathways in various cell types. Activation of PAKs promotes liver cancer growth and metastasis and contributes to the resistance of liver cancer to radiotherapy and chemotherapy, leading to poor survival of patients. PAKs also play important roles in the development and progression of hepatitis and other pathological processes of the liver such as fibrosis and ischemia-reperfusion injury. In this review, we have summarized the currently available studies about the role of PAKs in liver disorders and the mechanisms involved, and further explored the potential therapeutic application of PAK inhibitors in liver disorders, with the aim to provide a comprehensive overview on current progress and perspectives of PAKs in liver disorders.

10.
Future Med Chem ; 15(1): 57-71, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651264

RESUMEN

Aim: The clinical benefits of FLT3 inhibitors against acute myeloid leukemia (AML) have been limited by selectivity and resistance mutations. Thus, to identify FLT3 inhibitors possessing high selectivity and potency is of necessity. Methods & results: The authors used computational methods to systematically compare pocket similarity with 269 kinases. Subsequently, based on these investigations and beginning with in-house compound 10, they synthesized a series of 6-methyl-isoxazol[3,4-b]pyridine-3-amino derivatives and identified that compound 45 (IC50: 103 nM) displayed gratifying potency in human AML cell lines with FLT3-internal tandem duplications mutation as well as FLT3-internal tandem duplications-tyrosine kinase domain-transformed BaF3 cells. Conclusion: The integrated biological activity results indicated that compound 45 deserves further development for therapeutic remedies for AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Mutación , Línea Celular , Apoptosis , Tirosina Quinasa 3 Similar a fms/genética , Línea Celular Tumoral
11.
Biochim Biophys Acta Rev Cancer ; 1878(1): 188827, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309124

RESUMEN

Receptor tyrosine kinases (RTKs) are cell surface receptors that bind growth factor ligands and initiate cellular signaling. Of the 20 classes of RTKs, 7 classes, I-V, VIII, and X, are linked to head and neck cancers (HNCs). We focus on the first class of RTK, epidermal growth factor receptor (EGFR), as it is the most thoroughly studied class. EGFR overexpression is observed in 20% of tumors, and expression of EGFR variant III is seen in 15% of aggressive chemoradiotherapy resistant HNCs. Currently, the EGFR monoclonal antibody (mAb) cetuximab is the only FDA approved RTK-targeting drug for the treatment of HNCs. Clinical trials have also included EGFR mAbs, with tyrosine kinase inhibitors, and small molecule inhibitors targeting the EGFR, MAPK, and mTOR pathways. Additionally, Immunotherapy has been found to be effective in 15 to 20% of patients with recurrent or metastatic HNC as a monotherapy. Thus, attempts are underway for the combinatorial treatment of immunotherapy and EGFR mAbs to determine if the recruitment of immune cells in the tumor microenvironment can overcome EGFR resistance.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias de Cabeza y Cuello , Humanos , Cetuximab , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Receptores ErbB , Proteínas Tirosina Quinasas Receptoras , Inmunoterapia , Microambiente Tumoral
12.
Mol Biomed ; 3(1): 47, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36539659

RESUMEN

The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.

13.
Adv Sci (Weinh) ; 9(35): e2204649, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36285700

RESUMEN

Most cancer-related deaths are a result of metastasis. The development of small molecular inhibitors reversing cancer metastasis represents a promising therapeutic opportunity for cancer patients. This pan-cancer analysis identifies oncogenic roles of membrane-associated phosphatidylinositol transfer protein 3 (PITPNM3), which is crucial for cancer metastasis. Small molecules targeting PITPNM3 must be explored further. Here, PITPNM3-selective small molecular inhibitors are reported. These compounds exhibit target-specific inhibition of PITPNM3 signaling, thereby reducing metastasis of breast cancer cells. Besides, by using nanoparticle-based delivery systems, these PITPNM3-selective compounds loaded nanoparticles significantly repress metastasis of breast cancer in mouse xenograft models and organoid models. Notably, the results establish an important metastatic-promoting role for PITPNM3 and offer PITPNM3 inhibition as a therapeutic strategy in metastatic breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Proteínas de Unión al Calcio , Proteínas de la Membrana , Terapia Molecular Dirigida , Sistema de Administración de Fármacos con Nanopartículas , Animales , Femenino , Humanos , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Metástasis de la Neoplasia , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
14.
Front Pharmacol ; 13: 956220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105226

RESUMEN

The p21-activated kinase 4 (PAK4) is a member of the PAKs family. It is overexpressed in multiple tumor tissues. Pharmacological inhibition of PAK4 attenuates proliferation, migration, and invasion of cancer cells. Recent studies revealed that inhibition of PAK4 sensitizes immunotherapy which has been extensively exploited as a new strategy to treat cancer. In the past few years, a large number of PAK4 inhibitors have been reported. Of note, the allosteric inhibitor KPT-9274 has been tested in phase Ⅰ clinic trials. Herein, we provide an update on recent research progress on the PAK4 mediated signaling pathway and highlight the development of the PAK4 small molecular inhibitors in recent 5 years. Meanwhile, challenges, limitations, and future developmental directions will be discussed as well.

15.
Eur J Med Chem ; 241: 114650, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35939992

RESUMEN

Small ubiquitin-like modifier (SUMO)/sentrin-specific protease 1 (SENP1), is a cysteine protease that promotes SUMO maturation and deSUMOylation of target proteins and regulates transcription factors or co-regulatory factors to mediate gene transcription. Many studies have shown that SENP1 is the driving factor for a multitude of cancers including prostate cancer, liver cancer, and breast cancer. Inhibition of SENP1 activity has been proved to inhibit the survival, proliferation, invasion, and migration of cancer cells, and increase their chemical and radiation sensitivity. Therefore, SENP1 is a promising anti-tumor target. At present, peptide inhibitors of SENP1 have entered clinical trials. Recently, many small molecule compounds and natural products were synthesized and identified as SENP1 inhibitors, and showed good tumor inhibitory activity in vitro and in vivo. This review summarizes the structure, physiological function, and role of SENP1 in tumorigenesis and development, focusing on the design and discovery of small molecule inhibitors of SENP1 from the perspective of medicinal chemistry, providing ideas for the development and research of small molecule inhibitors of SENP1 in the future.


Asunto(s)
Proteasas de Cisteína , Neoplasias de la Próstata , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/metabolismo , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Investigación
16.
Cell Physiol Biochem ; 56(4): 367-381, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35981264

RESUMEN

BACKGROUND/AIMS: We recently reported increased phosphorylation (at S536) of the p65 subunit of NFκB (Rel A) in pancreatic beta (INS-1 832/13) cells following exposure to hyperglycemic (HG) conditions. We also demonstrated that HG-induced S536 phosphorylation of p65 is downstream to the regulatory effects of CARD9 since deletion of CARD9 expression significantly attenuated HG-induced S536 phosphorylation of p65 in beta cells. The overall objective of the current investigation is to identify putative mechanisms underlying HG-induced phosphorylation of p65 in islet beta cells following exposure to HG conditions. METHODS: INS-1 832/13 cells were incubated in low glucose (LG; 2.5 mM) or high glucose (HG; 20 mM) containing media for 24 hours in the absence or presence of small molecule inhibitors of G protein prenylation and activation. Non-nuclear and nuclear fractions were isolated from INS-1 832/13 cells using a commercially available (NE-PER) kit. Degree of S536 phosphorylation of the p65 subunit was quantified by western blotting and densitometry. RESULTS: HG-induced p65 phosphorylation was significantly attenuated by inhibitors of protein prenylation (e.g., simvastatin and L-788,123). Pharmacological inhibition of Tiam1-Rac1 (e.g., NSC23766) and Vav2-Rac1 (e.g., Ehop-016) signaling pathways exerted minimal effects on HG-induced p65 phosphorylation. However, EHT-1864, a small molecule compound, which binds to Rac1 thereby preventing GDP/GTP exchange, markedly suppressed HG-induced p65 phosphorylation, suggesting that Rac1 activation is requisite for HG-mediated p65 phosphorylation. Lastly, EHT-1864 significantly inhibited nuclear association of STAT3, but not total p65, in INS-1 832/13 cells exposed to HG conditions. CONCLUSION: Activation of Rac1, a step downstream to HG-induced activation of CARD9, might represent a requisite signaling step in the cascade of events leading to HG-induced S536 phosphorylation of p65 and nuclear association of STAT3 in pancreatic beta cells. Data from these investigations further affirm the role(s) of Rac1 as a mediator of metabolic stress- induced dysfunction of the islet beta cell.


Asunto(s)
Hiperglucemia , Células Secretoras de Insulina , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Hiperglucemia/metabolismo , Células Secretoras de Insulina/metabolismo , FN-kappa B/metabolismo , Fosforilación , Factor de Transcripción ReIA/metabolismo , Proteína de Unión al GTP rac1/metabolismo
17.
Molecules ; 27(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566022

RESUMEN

Human malignant melanoma exhibits imbalances in redox status, leading to activation of many redox-sensitive signaling pathways. APE/Ref-1 is a multifunctional protein that serves as a redox chaperone that regulates many nuclear transcription factors and is an important mechanism in cancer cell survival of oxidative stress. Previous studies showed that APE/Ref-1 is a potential druggable target for melanoma therapy. In this study, we synthesized a novel APE/Ref-1 inhibitor, bis-cinnamoyl-1,12-dodecamethylenediamine (2). In a xenograft mouse model, compound 2 treatment (5 mg/kg) significantly inhibited tumor growth compared to the control group, with no significant systemic toxicity observed. We further synthesized compound 2 analogs to determine the structure-activity relationship based on their anti-melanoma activities. Among those, 4-hydroxyphenyl derivative (11) exhibited potent anti-melanoma activities and improved water solubility compared to its parental compound 2. The IC50 of compound 11 was found to be less than 0.1 µM. Compared to other known APE/Ref-1 inhibitors, compound 11 exhibited increased potency in inhibiting melanoma proliferation. As determined by luciferase reporter analyses, compound 2 was shown to effectively inhibit H2O2-activated AP-1 transcription activities. Targeting APE/Ref-1-mediated signaling using pharmaceutical inhibitors is a novel and effective strategy for melanoma treatment with potentially high impact.


Asunto(s)
Hominidae , Melanoma , Animales , Cinamatos/farmacología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Hominidae/metabolismo , Humanos , Peróxido de Hidrógeno , Melanoma/tratamiento farmacológico , Ratones
18.
Eur J Med Chem ; 238: 114480, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35635952

RESUMEN

Autoimmune diseases represent a class of over 80 illnesses with high incidence and prevalence and share a common pathogenesis of immune system disorders and self-attack. Over the past decade, extensive studies have demonstrated that imbalance of cGAS-STING mediated innate immune signaling is closely involved in autoimmune diseases. Over-activation of cGAS-STING pathway by mutations of STING or several exonucleases can cause accumulation of interferon and systemic inflammation. Therefore, suppression of the upregulated cGAS-STING pathway holds great potential in the treatment of human inflammatory and autoimmune diseases. Inhibitors targeting cGAS, STING and the downstream factors have been developed and pharmacologically evaluated recently. Herein, we summarize the recent advance on development of small molecular inhibitors targeting the key effectors in cGAS-STING axis as promising treatment for autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Proteínas de la Membrana , Enfermedades Autoinmunes/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal/fisiología
19.
Leuk Lymphoma ; 63(9): 2149-2160, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35468015

RESUMEN

Mixed Lineage Leukemia rearranged acute myeloid leukemia (MLLr AML) predicts a poor prognosis. Histone demethylase JMJD1C is a potential druggable target of MLLr AML. However, little is known about how JMJD1C contributes to MLLr AML. Here we found that JMJD1C regulates lipid synthesis-associated genes including FADS2, SCD in MLLr AML cells. Lipid synthesis-associated protein FABP5 was identified as a specific interacting protein of JMJD1C and binds to the jumonji domain of JMJD1C. FABP5 also regulates JMJD1C mRNA and protein expression. JDI-10, a small molecular inhibitor of JMJD1C identified by us, represses MLLr AML cells, induces apoptosis, and decreases JMJD1C-regulated lipid synthesis genes. Moreover, JDI-10 mediated suppression of MLLr AML cells can be rescued by palmitic acid, oleic acid, or recombinant FABP5. In summary, we identified that JMJD1C-regulated lipid synthesis contributes to the maintenance of MLLr AML. Lipid synthesis repression may represent a new direction for the treatment of MLLr AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Proteínas de Unión a Ácidos Grasos , Histona Demetilasas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Ácido Oléico , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Ácido Palmítico , ARN Mensajero
20.
Pharmacol Res ; 173: 105869, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481973

RESUMEN

Advanced osteosarcoma (OSA) is highly aggressive and can lead to distant metastasis or recurrence. Here, a novel small-molecule inhibitor/antagonist of DNA methyltransferase 1 (DNMT-1) named DI-1 (inhibitor of DNMT-1) was explored to enhance the antitumor effect of a molecular-targeted agent, cabozantinib, on OSA cell lines. In patients with OSA, expression of DNMT-1 was negatively related with that of microRNA (miR)-34a and associated with a poor prognosis. In OSA cell lines (OSA cell line U2OS and an OSA cell line U2OSR resistance to cabozantinib), DI-1 treatment enhanced miR-34a expression by inhibiting hypermethylation of the promoter region of miR-34a mediated by DNMT-1. DI-1 enhanced the sensitivity of OSA cells (U2OS, 143B and MG63) to cabozantinib and other molecular-targeted agents by enhancing miR-34a expression and repressing activation of the Notch pathway. Mechanistically, DI-1 repressed recruitment of DNMT-1 to the promoter region of miR-34a and, in turn, decreased the methylation rate in the promoter region of miR-34a in OSA cells. These results suggest that repressing DNMT-1 activation by DI-1 enhances miR-34a expression in OSA cells and could be a promising therapeutic strategy for OSA.


Asunto(s)
Anilidas/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias Óseas/tratamiento farmacológico , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Osteosarcoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Piridinas/administración & dosificación , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/mortalidad , Neoplasias Óseas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Ratones Desnudos , MicroARNs , Osteosarcoma/genética , Osteosarcoma/mortalidad , Osteosarcoma/patología , Pronóstico , Regiones Promotoras Genéticas , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA