Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Intervalo de año de publicación
1.
Insect Sci ; 31(3): 720-732, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38339806

RESUMEN

The small brown planthopper (SBPH, Laodelphax striatellus) is a significant rice pest, responsible for transmitting rice stripe virus (RSV) in a persistent and propagative manner. RSV is one of the most detrimental rice viruses, causing rice stripe disease, which results in considerable loss of rice grain yield. While RNA interference and gene knockout techniques have enabled gene downregulation in SBPH, no system currently exists for the overexpression of endogenous or exogenous genes. Consequently, the development of a protein expression system for SBPH is imperative to serve as a technical foundation for pest control and gene function investigations. This study aimed to construct an expression vector using the promoter of the constitutive-expressed tubulin gene of SBPH, and promoter of human cytomegalovirus (CMV). Fluorescence experiments demonstrated that both tubulin and CMV promoter could drive green fluorescent protein (GFP) expression in SBPH, and could also facilitate the expression of a nucleocapsid protein (NP) -GFP fusion protein containing viral NP with comparable efficiency. Through expression vector optimization, we have identified that the 3 tandem CMV promoters display a significantly higher promoter activity compared with both the 2 tandem CMV promoters and the single CMV promoter. In addition, the incorporation of Star polycation nanoparticles significantly enhanced the expression efficiency in SBPH. These results provide a promising technical platform for investigating gene functions in SBPH.


Asunto(s)
Citomegalovirus , Hemípteros , Regiones Promotoras Genéticas , Hemípteros/genética , Hemípteros/virología , Hemípteros/metabolismo , Citomegalovirus/genética , Animales , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Vectores Genéticos
2.
Viruses ; 16(1)2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38257797

RESUMEN

MicroRNAs (miRNAs) are non-coding RNAs, which, as members of the RNA interference pathway, play a pivotal role in antiviral infection. Almost 80% of plant viruses are transmitted by insect vectors; however, little is known about the interaction of the miRNAs of insect vectors with plant viruses. Here, we took rice black-streaked dwarf virus (RBSDV), a devastating virus to rice production in eastern Asia, and the small brown planthopper, (SBPH, Laodelphax striatellus) as a model to investigate the role of microRNA750-3p (miR750-3p) in regulating viral transmission. Our results showed that Ls-miR750-3p was downregulated in RBSDV-infected SBPH and predominately expressed in the midgut of SBPH. Injection with miR750-3p agomir significantly reduced viral accumulation, and the injection with the miR750-3p inhibitor, antagomir-750-3p, dramatically promoted the viral accumulation in SBPH, as detected using RT-qPCR and Western blotting. The processing of precursor 7 (POP7), a subunit of RNase P and RNase MRP, was screened, identified, and verified using a dual luciferase reporter assay as one target of miR750-3p. Knockdown of POP7 notably increased RBSDV viral propagation in SBPH and then increased the viral transmission rate by SBPH. Taken together, our data indicate that miR750-3p targets POP7 to suppress RBSDV infection in its insect vector. These results enriched the role of POP7 in modulating virus infection in host insects and shared new insight into the function of miRNAs in plant virus and insect vector interaction.


Asunto(s)
Hemípteros , MicroARNs , Virus de Plantas , Animales , Virus de Plantas/genética , Antagomirs , MicroARNs/genética
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902211

RESUMEN

The small brown planthopper (SBPH, Laodelphax striatellus) is one of the most destructive insect pests in rice (Oryza sativa), which is the world's major grain crop. The dynamic changes in the rice transcriptome and metabolome in response to planthopper female adult feeding and oviposition have been reported. However, the effects of nymph feeding remain unclear. In this study, we found that pre-infestation with SBPH nymphs increased the susceptibility of rice plants to SBPH infestation. We used a combination of broadly targeted metabolomic and transcriptomic studies to investigate the rice metabolites altered by SBPH feeding. We observed that SBPH feeding induced significant changes in 92 metabolites, including 56 defense-related secondary metabolites (34 flavonoids, 17 alkaloids, and 5 phenolic acids). Notably, there were more downregulated metabolites than upregulated metabolites. Additionally, nymph feeding significantly increased the accumulation of seven phenolamines and three phenolic acids but decreased the levels of most flavonoids. In SBPH-infested groups, 29 differentially accumulated flavonoids were downregulated, and this effect was more pronounced with infestation time. The findings of this study indicate that SBPH nymph feeding suppresses flavonoid biosynthesis in rice, resulting in increased susceptibility to SBPH infestation.


Asunto(s)
Hemípteros , Oryza , Animales , Femenino , Oryza/genética , Ninfa , Metabolismo Secundario , Perfilación de la Expresión Génica , Hemípteros/genética
4.
Insect Biochem Mol Biol ; 152: 103894, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535580

RESUMEN

The c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in viral infection in host cells. In addition to triggering immune reactions against pathogens, the JNK signaling pathway has also been found to benefit viral infection. Our previous work showed that JNK activation facilitated rice stripe virus (RSV) accumulation in the insect vector small brown planthopper, but the underlying mechanisms remain elusive. Here, we revealed a link between JNK activation and the transcriptional upregulation of the plasma membrane protein flotillin 2, which mediates RSV cell entry. c-Jun, a downstream substrate of JNKs, was identified as a transcription factor that targets the promoter of flotillin 2 at three binding sites. Phosphorylated c-Jun, especially at the serine 63 site, promoted the transcriptional activity of c-Jun on flotillin 2. JNK activation or inhibition affected c-Jun phosphorylation status and flotillin 2 expression. In the midguts of planthoppers, RSV infection significantly increased flotillin 2 expression and the phosphorylation level of JNKs and c-Jun. Manipulation of JNK status impacted viral acquisition in midgut cells. These findings reveal a new regulatory mechanism of the JNK signaling pathway and shed light on the virus-supportive effect of this pathway.


Asunto(s)
Proteínas de la Membrana , Factores de Transcripción , Animales , Proteínas de la Membrana/genética , Regulación de la Expresión Génica , Fosforilación , Insectos Vectores
5.
Genome Biol Evol ; 14(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36317697

RESUMEN

In insects, sex chromosome differentiation often results in unequal gene dosages between sexes. Dosage compensation mechanisms evolve to balance gene expression, but the degree and mechanism of regulation often vary by insect species. In hemipteran species, the small brown planthopper (SBPH), Laodelphax striatellus, is an injurious crop pest, with a sex chromosome type XX in females and XO in males. This species offers the opportunity to study dosage compensation and sex-biased gene expression. In this study, we generated a chromosome-level genome of SBPH using Oxford Nanopore Technologies and high-throughput chromatin conformation capture (Hi-C) technology. We also sequenced RNA-seq data from 16 tissue samples to annotate the genome and analyze gene dosage compensation. We finally obtained a 510.2 megabases (Mb) genome with 99.12% of the scaffolds anchored on 15 chromosomes (14 autosomes and 1 X chromosome) and annotated 16,160 protein-coding genes based on full-length cDNA sequencing data. Furthermore, we found complete dosage compensation in all L. striatellus somatic tissues, but lack of dosage compensation in gonad tissue testis. We also found that female-biased genes were significantly enriched on the X chromosome in all tissues, whereas male-biased genes in gonad tissues were enriched on autosomes. This study not only provides a high-quality genome assembly but also lays a foundation for a better understanding of the sexual regulatory network in hemipteran insects.


Asunto(s)
Compensación de Dosificación (Genética) , Hemípteros , Animales , Femenino , Masculino , Cromosoma X/genética , Cromosomas Sexuales/genética , Hemípteros/genética , Expresión Génica
6.
Pest Manag Sci ; 78(12): 5325-5333, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36039706

RESUMEN

BACKGROUND: Plant viruses transmitted by arthropod vectors threaten crop health worldwide. Rice stripe virus (RSV) is one of the most important rice viruses in East Asia and is transmitted by the small brown planthopper (SBPH). Previously, it was demonstrated that the viral glycoprotein NSvs2-N could mediate RSV infection of the vector midgut. Therefore, NSvc2-N protein could potentially be used to reduce RSV transmission by competitively blocking midgut receptors. RESULTS: Here, we report that transgenic rice plants expressing viral glycoprotein can interfere with RSV acquisition and transmission by SBPH. The soluble fraction (30-268 amino acids, designated NSvs2-NS ) of NSvs2-N was transformed into rice calli, which produced plants harboring the exogenous gene. When SBPH was fed on transgenic plants prior to RSV-infected rice (sequential feeding) and when insects were fed on RSV-infected transgenic plants (concomitant feeding), virus acquisition by the insect vector was inhibited, and subsequent viral titers were reduced. Immunofluorescence labeling also indicated that viral infection of the insect midgut was inhibited after SBPH was fed on transgenic plants. The system by which RSV infected insect cells in vitro was used to corroborate the role of NSvc2-NS in reducing viral infection. After the cells were incubated with transgenic rice sap, the virus infection rate of the cells decreased significantly, and viral accumulation in the cells was lower than that in the control group. CONCLUSION: These results demonstrated the negative effect of NSvs2-NS transgenic plants on RSV transmission by insect vectors, which provides a novel and effective way to control plant viral diseases. © 2022 Society of Chemical Industry.


Asunto(s)
Hemípteros , Oryza , Tenuivirus , Animales , Tenuivirus/genética , Hemípteros/genética , Insectos Vectores , Insectos , Glicoproteínas , Enfermedades de las Plantas , Oryza/genética
7.
Bioengineering (Basel) ; 9(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36004924

RESUMEN

The homeodomain-leucine zipper (HDZIP) is an important transcription factor family, instrumental not only in growth but in finetuning plant responses to environmental adversaries. Despite the plethora of literature available, the role of HDZIP genes under chewing and sucking insects remains elusive. Herein, we identified 40 OsHDZIP genes from the rice genome database. The evolutionary relationship, gene structure, conserved motifs, and chemical properties highlight the key aspects of OsHDZIP genes in rice. The OsHDZIP family is divided into a further four subfamilies (i.e., HDZIP I, HDZIP II, HDZIP III, and HDZIP IV). Moreover, the protein-protein interaction and Gene Ontology (GO) analysis showed that OsHDZIP genes regulate plant growth and response to various environmental stimuli. Various microRNA (miRNA) families targeted HDZIP III subfamily genes. The microarray data analysis showed that OsHDZIP was expressed in almost all tested tissues. Additionally, the differential expression patterns of the OsHDZIP genes were found under salinity stress and hormonal treatments, whereas under brown planthopper (BPH), striped stem borer (SSB), and rice leaf folder (RLF), only OsHDZIP3, OsHDZIP4, OsHDZIP40, OsHDZIP10, and OsHDZIP20 displayed expression. The qRT-PCR analysis further validated the expression of OsHDZIP20, OsHDZIP40, and OsHDZIP10 under BPH, small brown planthopper (SBPH) infestations, and jinggangmycin (JGM) spraying applications. Our results provide detailed knowledge of the OsHDZIP gene family resistance in rice plants and will facilitate the development of stress-resilient cultivars, particularly against chewing and sucking insect pests.

8.
J Pestic Sci ; 47(2): 78-85, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35800394

RESUMEN

γ-Aminobutyric acid receptors (GABARs) mediate fast inhibitory neurotransmission and are targets for insecticides. GABARs are composed of five subunits, the composition of which dictates the pharmacological characteristics of GABARs. Both competitive and noncompetitive GABAR antagonists can be used as insecticides. Gabazine is a potent competitive antagonist of mammalian α1ß2γ2 GABARs; however, it is less potent against insect GABARs. To explore how gabazine interacts with GABARs, we examined whether the sensitivity of the small brown planthopper (Laodelphax striatellus) RDL GABAR (LsRDLR) to gabazine is increased when its amino acid residues are substituted with α1ß2γ2 GABAR residues. In the results, two of the generated mutants showed enhanced gabazine sensitivity. Docking simulations of gabazine using LsRDLR homology models and an α1ß2γ2 GABAR cryo-EM structure revealed that the accommodation of gabazine into the "aromatic box" in the orthosteric site lowered the binding energy. This information may help in designing GABAR-targeting insecticides with novel modes of action.

9.
Phytopathology ; 112(9): 2022-2027, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35297646

RESUMEN

Research on plant-virus-vector interactions has revealed that viruses can enhance their spread to new host plants by attracting nonviruliferous vectors to infected plants or driving viruliferous vectors to noninfected plants. However, whether viruses can also modulate the feeding preference of viruliferous vectors for different plant parts remains largely unknown. Here, by using rice stripe virus (RSV) and its vector, the small brown planthopper (SBPH), as a model, the effect of the virus on the feeding preference of its vector was studied by calculating the number of nonviruliferous and viruliferous SBPHs settling on different parts of rice plants. The results showed that the RSV-free SBPHs significantly preferred feeding on the stems of rice plants, whereas RSV-carrying SBPHs fed more on rice leaves. Moreover, the rice plants inoculated with RSV on the leaves showed more severe symptoms, with enhanced disease incidence and virus accumulation compared with rice plants inoculated at the top and bottom of stems, suggesting that the leaves are more susceptible to RSV than the stems of rice plants. These results demonstrate that RSV modulates the feeding preference of its transmitting vector SBPH from the stems to leaves of rice plants to promote virus infection. Interestingly, we also found that the leaves were more susceptible than the stems to rice black-streaked dwarf virus. This study proves that the feeding preference of insect vectors can be modulated by plant viruses to facilitate virus transmission.


Asunto(s)
Hemípteros , Oryza , Tenuivirus , Virosis , Animales , Enfermedades de las Plantas , Tenuivirus/genética
10.
Genomics ; 114(3): 110329, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278617

RESUMEN

The small brown planthopper (SBPH), Laodelphax striatellus (Fallén) is one of the most destructive rice pests and has caused serious economic losses in China. To clarify the genetic differentiation and population genetic structure of this insect pest, we investigated the genomic polymorphisms, genetic differentiation, and phylogeography of 31 SBPH populations from 28 sampling sites from three climatic zones of China using double-digest restriction site-associated DNA sequencing (ddRADseq). In total, 2,813,221,369 high-quality paired-end reads from 306 individuals and 1925 single nucleotide polymorphisms (SNPs) were obtained. Low levels of genetic diversity and significant genetic differentiation were observed among the SBPH populations, and three genetic clusters were detected in China. Neutrality tests and bottleneck analysis provided strong evidence for recent rapid expansion with a severe bottleneck in most populations. Our work provides new insights into the genetics of the SBPH and will contribute to the development of effective management strategies for this pest.


Asunto(s)
Hemípteros , Oryza , Humanos , Animales , Polimorfismo de Nucleótido Simple , Hemípteros/genética , Secuencia de Bases , Análisis de Secuencia de ADN , China , Oryza/genética
11.
Pathogens ; 11(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35215088

RESUMEN

Rice viral diseases adversely affect crop yield and quality. Most rice viruses are transmitted through insect vectors. However, the traditional whole-plant inoculation method cannot control the initial inoculation site in rice plants because the insect feeding sites in plants are random. To solve this problem, we established a determined-part inoculation approach in this study that restricted the insect feeding sites to specific parts of the rice plant. Rice stripe virus (RSV) was used as the model virus and was inoculated at the bottom of the stem using our method. Quantitative real-time PCR and Western blot analyses detected RSV only present at the bottom of the Nipponbare (NPB) stem at 1 day post-inoculation (dpi), indicating that our method successfully controlled the inoculation site. With time, RSV gradually moved from the bottom of the stem to the leaf in NPB rice plants, indicating that systemic viral spread can also be monitored using this method. In addition, a cultivar resistant to RSV, Zhendao 88 (ZD88), was inoculated using this method. We found that RSV accumulation in ZD88 was significantly lower than in NPB. Additionally, the expression level of the resistant gene STV11 in ZD88 was highly induced at the initial invasion stage of RSV (1 dpi) at the inoculation site, whereas it remained relatively stable at non-inoculated sites. This finding indicated that STV11 directly responded to RSV invasion to inhibit virus accumulation at the invasion site. We also proved that this approach is suitable for other rice viruses, such as Rice black-streaked dwarf virus (RBSDV). Interestingly, we determined that systemic infection with RSV was faster than that with RBSDV in NPB, which was consistent with findings in field trails. In summary, this approach is suitable for characterizing the viral infection process in rice plants, comparing the local viral accumulation and spread among different cultivars, analyzing the spatiotemporal expression pattern of resistance-associated genes, and monitoring the infection rate for different viruses.

12.
Insects ; 13(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055947

RESUMEN

Induced resistance against SBPH via microbial pesticides is considered as an eco-friendly and promising management approach. In this study, the induced resistance against SBPH in rice seedling by a new potential microbial pesticide, decoyinine (DCY), a secondary metabolite produced by Streptomyces hygroscopicus, was evaluated to investigate the effects of DCY on SBPH's biological and population parameters along with defense-related physiological and biochemical indices in rice against SBPH feeding. We found that DCY has potential to improve rice resistance and significantly reduced the fecundity of SBPH. Laboratory results revealed that DCY treated rice significantly changed SBPH's fecundity and population life table parameters. The concentrations of hydrogen peroxide (H2O2), soluble sugars and malondialdehyde (MDA) were significantly lower in DCY treated rice plants against SBPH infestation at 24, 48 and 96 hours post infestation (hpi), respectively. The concentrations of antioxidant enzymes, catalase (CAT) was significantly higher at 72 hpi, while super oxidase dismutase (SOD) and peroxidase (POD) concentrations were recorded higher at 96 hpi. The concentrations of synthases enzymes, phenyl alanine ammonia-lyase (PAL) was higher at 48 hpi, whereas polyphenol oxidase (PPO) concentration was maximum at 72 hpi against SBPH infestation. The results imply that DCY has unique properties to enhance rice resistance against SBPH by stimulating plant defensive responses. Microbial pesticides may be developed as an alternative to chemical pest control.

13.
J Virol ; 96(2): e0171521, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34757837

RESUMEN

Alternative splicing (AS) is a frequent posttranscriptional regulatory event occurring in response to various endogenous and exogenous stimuli in most eukaryotic organisms. However, little is known about the effects of insect-transmitted viruses on AS events in insect vectors. The present study used third-generation sequencing technology and RNA sequencing (RNA-Seq) to evaluate the AS response in the small brown planthopper Laodelphax striatellus to rice stripe virus (RSV). The full-length transcriptome of L. striatellus was obtained using single-molecule real-time sequencing technology (SMRT). Posttranscriptional regulatory events, including AS, alternative polyadenylation, and fusion transcripts, were analyzed. A total of 28,175 nonredundant transcript isoforms included 24,950 transcripts assigned to 8,500 annotated genes of L. striatellus, and 5,000 of these genes (58.8%) had AS events. RNA-Seq of the gut samples of insects infected by RSV for 8 d identified 3,458 differentially expressed transcripts (DETs); 2,185 of these DETs were transcribed from 1,568 genes that had AS events, indicating that 31.4% of alternatively spliced genes responded to RSV infection of the gut. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, experienced exon skipping, resulting in three transcript isoforms. These three isoforms differentially responded to RSV infection during development and in various organs. Injection of double-stranded RNAs targeting all or two isoforms indicated that three or at least two JNK2 isoforms facilitated RSV accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors. IMPORTANCE Alternative splicing (AS) is a regulatory mechanism that occurs after gene transcription. AS events can enrich protein diversity to promote the reactions of the organisms to various endogenous and exogenous stimulations. It is not known how insect vectors exploit AS events to cope with transmitted viruses. The present study used third-generation sequencing technology to obtain the profile of AS events in the small brown planthopper Laodelphax striatellus, which is an efficient vector for rice stripe virus (RSV). The results indicated that 31.4% of alternatively spliced genes responded to RSV infection in the gut of planthoppers. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, produced three transcript isoforms by AS. These three isoforms showed different responses to RSV infection, and at least two isoforms facilitated viral accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors.


Asunto(s)
Empalme Alternativo , Hemípteros/virología , Insectos Vectores/virología , Tenuivirus/fisiología , Animales , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/virología , Fusión Génica , Hemípteros/genética , Proteínas de Insectos/genética , Insectos Vectores/genética , Proteína Quinasa 9 Activada por Mitógenos/genética , Oryza/virología , Enfermedades de las Plantas/virología , Poliadenilación , Isoformas de Proteínas , Transcriptoma/genética
14.
Mol Plant Pathol ; 22(9): 1070-1081, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34251749

RESUMEN

N6 methylation of adenosine (m6 A) was recently discovered to play a role in regulating the life cycle of various viruses by modifying viral and host RNAs. However, different studies on m6 A effects on the same or different viruses have revealed contradictory roles for m6 A in the viral life cycle. In this study, we sought to define the role of m6 A on infection by rice black streaked dwarf virus (RBSDV), a double-stranded RNA virus, of its vector small brown planthopper (SBPH). Infection by RBSDV decreased the level of m6 A in midgut cells of SBPHs. We then cloned two genes (LsMETTL3 and LsMETTL14) that encode m6 A RNA methyltransferase in SBPHs. After interference with expression of the two genes, the titre of RBSDV in the midgut cells of SBPHs increased significantly, suggesting that m6 A levels were negatively correlated with virus replication. More importantly, our results revealed that m6 A modification might be the epigenetic mechanism that regulates RBSDV replication in its insect vector and maintains a certain virus threshold required for persistent transmission.


Asunto(s)
Hemípteros , Oryza , Virus de Plantas , Animales , Insectos Vectores , Oryza/genética , Enfermedades de las Plantas , Virus de Plantas/genética , ARN
15.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34290144

RESUMEN

The importin α family belongs to the conserved nuclear transport pathway in eukaryotes. However, the biological functions of importin α in the plasma membrane are still elusive. Here, we report that importin α, as a plasma membrane-associated protein, is exploited by the rice stripe virus (RSV) to enter vector insect cells, especially salivary gland cells. When the expression of three importin α genes was simultaneously knocked down, few virions entered the salivary glands of the small brown planthopper, Laodelphax striatellus Through hemocoel inoculation of virions, only importin α2 was found to efficiently regulate viral entry into insect salivary-gland cells. Importin α2 bound the nucleocapsid protein of RSV with a relatively high affinity through its importin ß-binding (IBB) domain, with a dissociation constant KD of 9.1 µM. Furthermore, importin α2 and its IBB domain showed a distinct distribution in the plasma membrane through binding to heparin in heparan sulfate proteoglycan. When the expression of importin α2 was knocked down in viruliferous planthoppers or in nonviruliferous planthoppers before they acquired virions, the viral transmission efficiency of the vector insects in terms of the viral amount and disease incidence in rice was dramatically decreased. These findings not only reveal the specific function of the importin α family in the plasma membrane utilized by viruses, but also provide a promising target gene in vector insects for manipulation to efficiently control outbreaks of rice stripe disease.


Asunto(s)
Membrana Celular/enzimología , Hemípteros/virología , Carioferinas/metabolismo , Glándulas Salivales/virología , Tenuivirus/fisiología , Internalización del Virus , Animales , Membrana Celular/metabolismo , Insectos Vectores/virología , Carioferinas/genética , Oryza/virología , Enfermedades de las Plantas/virología
16.
Pest Manag Sci ; 77(7): 3561-3570, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33840148

RESUMEN

BACKGROUND: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs, play key roles in various biological processes. Most plant viruses are transmitted by insect vectors. However, little is known about the function of miRNAs on plant virus-insect host interaction. RESULTS: We investigated the role of miR-315-5p in regulation of plant viral infection in insects using a rice black-streaked dwarf virus (RBSDV) and small brown planthopper (SBPH) interaction system. Our results showed that miR-315-5p had the highest expression level in 2nd-instar nymph, and was highly expressed in the salivary gland and midgut in SBPH. miR-315-5p was in response to and regulated RBSDV infection in SBPH. Injection of miR-315-5p mimic, agomir-315, significantly increased the RBSDV accumulation, whereas injection of miR-315-5p inhibitor, antagomir-315, reduced virus accumulation in SBPH. Furthermore, a melatonin receptor was identified as a target gene of miR-315-5p by the dual luciferase reporter assay. Knockdown of the melatonin receptor significantly increased the expression of RBSDV coat protein gene S10 and replication related genes, S5-1, S6, and S9-1. Furthermore, treatment with melatonin receptor antagonist luzindole and activator agomelatine significantly increased and reduced RBSDV accumulation in SBPH, respectively. Compared to the control, miR-315-5p did not affect the efficiency of RBSDV acquisition in SBPH. However, the efficiency of RBSDV transmission was significantly reduced after injecting antagomir-315. CONCLUSION: Taken together, our data reveal that miR-315-5p is beneficial for RBSDV infection in its insect vector by directly targeting a melatonin receptor. These findings provide a new insight to the function of miRNAs in virus-insect vector interaction. © 2021 Society of Chemical Industry.


Asunto(s)
Hemípteros , MicroARNs , Oryza , Virus de Plantas , Reoviridae , Virosis , Animales , Hemípteros/genética , MicroARNs/genética , Oryza/genética , Enfermedades de las Plantas/genética , Receptores de Melatonina , Reoviridae/genética
17.
J Proteomics ; 239: 104184, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33711487

RESUMEN

Persistent plant viruses multiply and circulate inside insect vectors following the route of midgut-hemolymph-salivary gland. Currently, how viruses interact with insect vectors after they are released into hemolymph is not entirely clear. In this study, we found that the hemolymph and fat body (HF) contained the highest Rice stripe virus (RSV) levels. Proteomic analysis on RSV-free and RSV-infected HF identified 156 differentially expressed proteins (DEPs), with the majority of them participating in metabolism, transportation, and detoxification. The RNA binding protein esf2 was the most downregulated protein. Knocking down the expression of esf2 did not influence the RSV burden, but caused the lethal effect to L. striatellus. In contrast, the mRNA decay protein ZFP36L1 was 69% more abundant upon RSV infection, and suppression of ZFP36L1 significantly increased the RSV burden. Our results reveal the potential role of ZFP36L1 in restricting the viral proliferation, and provide valuable clues for unravelling the interaction between RSV and L. striatellus in HF. SIGNIFICANCE: More than 76% of plant viruses are transmitted by insect vectors. For persistent propagative transmission, plant viruses multiply and circulate inside insects following the route of midgut-hemolymph-salivary gland. However, how viruses interact with vector insects after they are released into hemolymph is not entirely clear. Our study investigated the influence of rice stripe virus (RSV) on insect hemolymph and fat body by iTRAQ labeling method. Among the 156 differentially expressed proteins (DEPs) identified, two proteins associated with mRNA metabolism were selected for function analysis. We found that the mRNA decay activator protein ZFP36L1 influenced the RSV proliferation, and RNA binding protein esf2 caused the lethal effect to L. striatellus. Our results provide valuable clues for unveiling the interaction between RSV and L. striatellus, and might be useful in pest management.


Asunto(s)
Hemípteros , Oryza , Tenuivirus , Animales , Proliferación Celular , Insectos Vectores , Proteómica
18.
J Econ Entomol ; 114(2): 937-946, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33459777

RESUMEN

Microbiome associated with insects play vital roles in host ecology and physiology. The small brown planthopper (SBPH), Laodelphax striatellus, is a polyphagous insect pest that caused enormous damage to a wide range of cereal crops. Previous studies have assessed the effects of environmental factors, such as antibiotics, insecticide, and geographical habitat on the bacterial composition of SBPH. However, the influence of host plants on the microbial community in SBPH still unclear. Here, we characterized and compared the microbial community in three SBPH populations feeding on rice, barley, and wheat, respectively, using high-throughput amplicon sequencing. Our observations revealed that the microbiome harbored by SBPH was abundant and diverse. Ten phyla comprising 141 genera of bacteria were annotated, and four fungal phyla consisting of 47 genera were assigned. The bacteria belonging to the phylum Proteobacteria were the most prevalent and the fungi with the highest abundance were from the order Hypocreales. Comparative analysis showed that host plants could significantly induce structural changes of SBPH microbiome. Significant differences in abundance were observed in two main bacterial orders (Rickettsiales and Rhodospirillales) and three fungal classes (Sordariomycetes, an unclassified class in Ascomycota and Eurotiomycetes) among three host-adapted SBPH populations. Our results could broaden our understanding of interactions among SBPH, its microbial associates and host plants, and also represented the basis of future SBPH biological management.


Asunto(s)
Hemípteros , Microbiota , Oryza , Animales , Bacterias/genética , Hongos
19.
Pest Manag Sci ; 77(5): 2272-2281, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33421243

RESUMEN

BACKGROUND: Calcium (Ca2+ )-binding proteins in the saliva of herbivorous insects function as effectors to attenuate host plant defenses and thus improve insect feeding performance. Silencing these genes via transgenic plant-mediated RNAi is thus a promising pest control strategy. However, their sequences and functions in the small brown planthopper Laodelphax striatellus (SBPH) remain to be investigated. RESULTS: We identified a putative EF-hand Ca2+ -binding protein (LsECP1) in SBPH watery saliva. LsECP1 was expressed extremely high in the salivary glands but at a low level during the egg stage. Transient LsECP1 expression in rice cells indicated its cytoplasm and nucleus localization. The bacterially expressed recombinant LsECP1 protein exhibited Ca2+ -binding activity. Rice plants fed by SBPH nymphs with knocked down LsECP1 exhibited higher levels of cytosolic Ca2+ , jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile) and hydrogen peroxide (H2 O2 ). Consistently, application of heterogeneously expressed LsECP1 protein suppressed wound-induced JA, JA-Ile and H2 O2 accumulation in rice. Thus, LsECP1 knockdown by dsRNA injection resulted in reduced feeding, fecundity and survival rates of SBPH reared on rice plants. Transgenic rice plants constitutively expressing LsECP1 dsRNA were produced, and plant-mediated LsECP1 knockdown enhanced rice resistance to SBPH. CONCLUSION: SBPH LsECP1 acts as an effector to impair host rice defense responses and promotes SBPH performance. This discovery provides a potential gene target for plant-mediated RNAi-based pest management. © 2021 Society of Chemical Industry.


Asunto(s)
Hemípteros , Oryza , Animales , Proteínas de Unión al Calcio , Hemípteros/genética , Oryza/genética , Plantas Modificadas Genéticamente/genética , Interferencia de ARN
20.
Mitochondrial DNA A DNA Mapp Seq Anal ; 31(8): 346-354, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33030077

RESUMEN

The small brown planthopper (SBPH), Laodelphax striatellus Fallén (Hemiptera: Delphacidae), is a crucial devastating rice pest in East Asia. To effectively control this pest, we investigate the genetic diversity, genetic differentiation and genetic structure of 49 populations in China based on a 596 bp fragment of the mitochondrial DNA cytochrome c oxidase subunit I (mtDNA COI) gene. Overall, 83 haplotypes were detected in 1253 mtDNA COI sequences. High levels of genetic variability (Hd = 0.756 ± 0.009, π = 0.00416 ± 0.00011) and genetic differentiation (FST = 0.262, p < .001) were observed. Bayesian inference phylogenetic and median-joining haplotype network analyses indicated no obvious geographical distribution pattern among haplotypes. Hierarchical AMOVA and SAMOVA revealed no genetically distinct groups and lack of obvious phylogeographic structure. Isolation by distance (IBD) analysis results demonstrated no correlation between genetic differentiation and geographic distance. Finally, the demographic history of SBPH examined by neutrality tests and mismatch distribution analyses illustrated a sudden population expansion at the large spatial scale in China.


Asunto(s)
ADN Mitocondrial/genética , Hemípteros/clasificación , Mitocondrias/genética , Análisis de Secuencia de ADN/métodos , Animales , China , Variación Genética , Genética de Población , Haplotipos , Hemípteros/genética , Control de Plagas , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA