Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Cell Biol ; 180: 1-13, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37890924

RESUMEN

Image-guided radiation therapy (IGRT) platforms for preclinical research represent an important advance for radiation research. IGRT-based platforms more accurately model the delivery of therapeutic ionizing radiation as delivered in clinical practice which permits more translationally and clinically relevant radiation biology research. Fundamentally, IGRT allows for precise delivery of ionizing radiation in order to (1) ensure that the tumor and/or target of interest is adequately covered by the prescribed radiation dose, and (2) to minimize the radiation dose delivered to adjacent nontargeted or normal tissues. Here, we describe the techniques and outline a general workflow employed for IGRT in preclinical in vivo tumor models.


Asunto(s)
Neoplasias , Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Neoplasias/radioterapia , Flujo de Trabajo
2.
Z Med Phys ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37225604

RESUMEN

In human radiotherapy a safety margin (PTV margin) is essential for successful irradiation and is usually part of clinical treatment planning. In preclinical radiotherapy research with small animals, most uncertainties and inaccuracies are present as well, but according to the literature a margin is used only scarcely. In addition, there is only little experience about the appropriate size of the margin, which should carefully be investigated and considered, since sparing of organs at risk or normal tissue is affected. Here we estimate the needed margin for preclinical irradiation by adapting a well-known human margin recipe from van Herck et al. to the dimensions and requirements of the specimen on a small animal radiation research platform (SARRP). We adjusted the factors of the described formula to the specific challenges in an orthotopic pancreatic tumor mouse model to establish an appropriate margin concept. The SARRP was used with its image-guidance irradiation possibility for arc irradiation with a field size of 10 × 10 mm2 for 5 fractions. Our goal was to irradiate the clinical target volume (CTV) of at least 90% of our mice with at least 95% of the prescribed dose. By carefully analyzing all relevant factors we gain a CTV to planning target volume (PTV) margin of 1.5 mm for our preclinical setup. The stated safety margin is strongly dependent on the exact setting of the experiment and has to be adjusted for other experimental settings. The few stated values in literature correspond well to our result. Even if using margins in the preclinical setting might be an additional challenge, we think it is crucial to use them to produce reliable results and improve the efficacy of radiotherapy.

3.
Med Phys ; 50(7): 4459-4465, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37060293

RESUMEN

BACKGROUND: High precision radiotherapy with small irradiator size has potential in many treatment applications involving small shallow targets, with small animal radio-neuromodulation as an intriguing example. A focused kV technique based on novel usage of polycapillary x-ray lenses can focus x-ray beams to <0.2 mm in diameter, which is ideal for such uses. PURPOSE: Such an application also requires high resolution CT images for treatment planning and setup. In this work, we demonstrate the feasibility of using a virtual focal spot generated with an x-ray lens to perform high-resolution CBCT acquisition. METHOD: The experiment with x-ray lens was set up on an x-ray tabletop system to generate a virtual focal spot. The flood field images with and without the x-ray lens were first compared. A pinhole image was acquired for the virtual focal spot and compared with the one acquired with the conventional focal spot without the lens. The planar imaging resolution with and without the lens were evaluated using a line pair resolution phantom. The spatial resolution of the two settings were estimated by reconstructing a 0.15-mm wire phantom and comparing its full width half maximum (FWHM). A CBCT scan of a rodent head was also acquired to further demonstrate the improved resolution using the x-ray lens. RESULT: The proposed imaging setup with x-ray lens had a limited exposure area of 5 cm by 5 cm on the detector, which was suitable for guiding radio-neuromodulation to a small target in rodent brain. Compared to conventional imaging acquisition with a measured x-ray focal spot of 0.395 mm FWHM, the virtual focal spot size was measured at 0.175 mm. The reduction in focal spot size with lens leads to an almost doubled planar imaging resolution and a 26% enhancement in 3D spatial resolution. A realistic CBCT acquisition of a rodent head mimicked the imaging acquisition step for radio-neuromodulation and further showed the improved visualization for fine structures. CONCLUSION: This work demonstrated that the focused kV x-ray technique was capable of generating small focal spot size of <0.2 mm, which substantially improved x-ray imaging resolution for small animal imaging.


Asunto(s)
Cabeza , Animales , Rayos X , Radiografía , Fantasmas de Imagen , Cabeza/diagnóstico por imagen
4.
Dis Model Mech ; 15(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36263624

RESUMEN

Many patients treated for head and neck cancers experience salivary gland hypofunction due to radiation damage. Understanding the mechanisms of cellular damage induced by radiation treatment is important in order to design methods of radioprotection. In addition, it is crucial to recognize the indirect effects of irradiation and the systemic responses that may alter saliva secretion. In this study, radiation was delivered to murine submandibular glands (SMGs) bilaterally, using a 137Cs gamma ray irradiator, or unilaterally, using a small-animal radiation research platform (SARRP). Analysis at 3, 24 and 48 h showed dynamic changes in mRNA and protein expression in SMGs irradiated bilaterally. Unilateral irradiation using the SARRP caused similar changes in the irradiated SMGs, as well as significant off-target, bystander effects in the non-irradiated contralateral SMGs.


Asunto(s)
Radioisótopos de Cesio , Glándula Submandibular , Ratones , Animales , Glándula Submandibular/metabolismo , Glándula Submandibular/efectos de la radiación , Radioisótopos de Cesio/metabolismo , Efecto Espectador , Salivación/efectos de la radiación
5.
Front Pharmacol ; 12: 785165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912229

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2020.587970.].

6.
Cancers (Basel) ; 13(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830813

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. Innovative treatment concepts may enhance oncological outcome. Clinically relevant tumor models are essential in developing new therapeutic strategies. In the present study, we used two human PDAC cell lines for an orthotopic xenograft mouse model and compared treatment characteristics between this in vivo tumor model and PDAC patients. Tumor-bearing mice received stereotactic high-precision irradiation using arc technique after 3D-treatment planning. Induction of DNA damage in tumors and organs at risk (OARs) was histopathologically analyzed by the DNA damage marker γH2AX and compared with results after unprecise whole-abdomen irradiation. Our mouse model and preclinical setup reflect the characteristics of PDAC patients and clinical RT. It was feasible to perform stereotactic high-precision RT after defining tumor and OARs by CT imaging. After stereotactic RT, a high rate of DNA damage was mainly observed in the tumor but not in OARs. The calculated dose distributions and the extent of the irradiation field correlate with histopathological staining and the clinical example. We established and validated 3D-planned stereotactic RT in an orthotopic PDAC mouse model, which reflects the human RT. The efficacy of the whole workflow of imaging, treatment planning, and high-precision RT was proven by longitudinal analysis showing a significant improved survival. Importantly, this model can be used to analyze tumor regression and therapy-related toxicity in one model and will allow drawing clinically relevant conclusions.

7.
J Magn Reson ; 332: 107062, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34601187

RESUMEN

Small animal radiation experiments are of paramount importance for the advancement of human radiation therapy. These experiments use a dedicated radiation platform to deliver radiation to small animals, such as mice and rats, similar to how human radiation therapy is performed. By acquiring images immediately before radiation delivery to guide positioning of the animals, image guidance plays a critical role to ensure accuracy of the experiments. Recently, MR-based image guidance has been enabled in human radiation therapy. This paper proposes a new concept using a unilateral magnet-based MRI scanner to realize image guidance for small animal radiation experiments. We reported our design, optimization, construction, and characterization of the magnet. The magnet was designed using eight 2-inch neodymium magnet cubes arranged in a modified Halbach ring configuration. The ring has an opening to allow for animal positioning. We considered a spherical region of interest (ROI) located outside of the ring's plane to allow radiation delivery to the ROI without obstruction of the magnet. An optimization problem was formulated and solved to determine the positions and orientations of the magnet cubes to generate a magnetic field with desired properties in the ROI. The optimization improved the average magnetic flux density from 55 mT to 72 mT and reduced variation from 1.2 T/m to 1.0 T/m. We constructed the magnet using 3D-printed templates to hold the neodymium magnet cubes with the optimized positions and orientations. We measured the spatial distribution of the magnetic flux density. The measurement results and computed results agreed with an average difference of 0.35% through the ROI.


Asunto(s)
Imagen por Resonancia Magnética , Imanes , Animales , Campos Magnéticos , Ratones , Ratas
8.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298631

RESUMEN

CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches.

9.
Med Phys ; 48(7): 4038-4052, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33797098

RESUMEN

PURPOSE: Small animal irradiators are equipped with x-ray beams and cone collimators with millimeter dimensions to be used in preclinical research. The use of small fields in the kV energy range may require the application of energy-dependent, field size-dependent, or depth-dependent correction factors to the dosimetric data acquired for treatment planning system (TPS) commissioning purposes to obtain accurate dose values. Considering that these corrections are also detector dependent, the suitability of a synthetic single-crystal diamond detector for small-field relative dosimetry in a preclinical irradiator (220-kVp) was evaluated to avoid the necessity of applying correction factors during TPS commissioning. METHODS: The detector response was assessed during the transition for field sizes ranging from 20 × 20 mm2 to 3 × 3 mm2 , using the small animal radiation research platform (SARRP). The percentage depth dose distributions (PDDs), lateral profiles and output factors (OFs) were measured. The PDDs for the synthetic diamond detector were compared to the distributions acquired using a small-volume microchamber (0.016 cm3 ) and with Monte Carlo calculations using the MC3D in-house software package. The profiles and OFs were compared to the data from a silicon solid-state detector and to radiochromic film data provided by the manufacturer; for the OF determination, measurements made using a microchamber were added for comparison. The performance of several detectors used as references was previously validated for relative dosimetry in preclinical irradiators. A commercial TPS was commissioned for the factor-based algorithm, using the data acquired with the diamond detector, and no additional correction factors were applied. To verify the performance of the TPS and the accuracy of the dosimetric methodology, radiochromic film irradiation in water was conducted, and two-dimensional (2D) dose distributions in the coronal and axial planes were compared under different gamma criteria. RESULTS: Compared with the microchamber and MC3D distributions, the agreement of the PDDs using the synthetic diamond detector was better than 2%. The profile data exhibited very good agreement compared with the data from the silicon detector, with an average and a maximum difference of 0.31 and 0.39 mm in the penumbras, respectively. Compared with the data from the radiochromic film, the average and maximum differences were equal to 0.77 and 0.89 mm, respectively. Very good agreement, within 1%, was obtained between the OFs measured with the synthetic diamond detector and the radiochromic film, compared only for the cone collimators. The validation of the TPS commissioning using gamma criteria compared to film showed an average passing rate of 100% and 93.2% with a global gamma criterion of 1 mm/3% for the coronal and axial planes, respectively, including the 3 × 3 mm2 field size and penumbra regions. CONCLUSIONS: Synthetic diamond is a suitable detector for the complete relative dosimetry of small x-ray fields. The commissioning of the TPS with its own beam dosimetric data exhibited encouraging results even in a 3 × 3 mm2 field and penumbra region. This methodology allows for the prediction of 2D dose distributions with an accuracy in water ranging from 3 to 5% compared to the 2D distribution from film dosimetry.


Asunto(s)
Diamante , Radiometría , Animales , Dosimetría por Película , Método de Montecarlo , Rayos X
10.
Front Pharmacol ; 11: 587970, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343356

RESUMEN

Radiation injury will result in multiorgan dysfuntion leading to multiorgan failure. In addition to many factors such as radiation dose, dose rate, the severity of the injury will also depend on organ systems which are exposed. Here, we report the protective property of gamma tocotrienol (GT3) in total as well as partial body irradiation (PBI) model in C3H/HeN male mice. We have carried out PBI by targeting thoracic region (lung-PBI) using Small Animal Radiation Research Platform, an X-ray irradiator with capabilities of an image guided irradiation with a variable collimator with minimized exposure to non-targeted tissues and organs. Precise and accurate irradiation of lungs was carried out at either 14 or 16 Gy at an approximate dose rate of 2.6 Gy/min. Though a low throughput model, it is amenable to change the field size on the spot. No damage to other non-targeted organs was observed in histopathological evaluation. There was no significant change in peripheral blood counts of irradiated mice in comparison to naïve mice. Femoral bone marrow cells had no damage in irradiated mice. As expected, damage to the targeted tissue was observed in the histopathological evaluation and non-targeted tissue was found normal. Regeneration and increase of cellularity and megakaryocytes on GT3 treatment was compared to significant loss of cellularity in saline group. Peak alveolitis was observed on day 14 post-PBI and protection from alveolitis by GT3 was noted. In irradiated lung tissue, thirty proteins were found to be differentially expressed but modulated by GT3 to reverse the effects of irradiation. We propose that possible mode of action of GT3 could be Angiopoietin 2-Tie2 pathway leading to AKT/ERK pathways resulting in disruption in cell survival/angiogenesis.

11.
Radiat Oncol ; 15(1): 19, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969174

RESUMEN

BACKGROUND: Despite aggressive treatment regimens comprising surgery and radiochemotherapy, glioblastoma (GBM) remains a cancer entity with very poor prognosis. The development of novel, combined modality approaches necessitates adequate preclinical model systems and therapy regimens that closely reflect the clinical situation. So far, image-guided, fractionated radiotherapy of orthotopic GBM models represents a major limitation in this regard. METHODS: GL261 mouse GBM cells were inoculated into the right hemispheres of C57BL/6 mice. Tumor growth was monitored by contrast-enhanced conebeam CT (CBCT) scans. When reaching an average volume of approximately 7 mm3, GBM tumors were irradiated with daily fractions of 2 Gy up to a cumulative dose of 20 Gy in different beam collimation settings. For treatment planning and tumor volume follow-up, contrast-enhanced CBCT scans were performed twice per week. Daily repositioning of animals was achieved by alignment of bony structures in native CBCT scans. When showing neurological symptoms, mice were sacrificed by cardiac perfusion. Brains, livers, and kidneys were processed into histologic sections. Potential toxic effects of contrast agent administration were assessed by measurement of liver enzyme and creatinine serum levels and by histologic examination. RESULTS: Tumors were successfully visualized by contrast-enhanced CBCT scans with a detection limit of approximately 2 mm3, and treatment planning could be performed. For daily repositioning of the animals, alignment of bony structures in native CT scans was well feasible. Fractionated irradiation caused a significant delay in tumor growth translating into significantly prolonged survival in clear dependence of the beam collimation setting and margin size. Brain sections revealed tumors of similar appearance and volume on the day of euthanasia. Importantly, the repeated contrast agent injections were well tolerated, as liver enzyme and creatinine serum levels were only subclinically elevated, and liver and kidney sections displayed normal histomorphology. CONCLUSIONS: Contrast-enhanced, CT-based, fractionated radiation of orthotopic mouse GBM represents a versatile preclinical technique for the development and evaluation of multimodal radiotherapeutic approaches in combination with novel therapeutic agents in order to accelerate translation into clinical testing.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Modelos Animales de Enfermedad , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/efectos de la radiación , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Tomografía Computarizada de Haz Cónico , Medios de Contraste/administración & dosificación , Medios de Contraste/efectos adversos , Fraccionamiento de la Dosis de Radiación , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Ratones , Ratones Endogámicos C57BL , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/efectos adversos , Resultado del Tratamiento , Carga Tumoral/efectos de la radiación
12.
Cancers (Basel) ; 11(11)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731687

RESUMEN

Radiation therapy (RT) has traditionally not been widely used in the management of hepatic malignancies for fear of toxicity in the form of radiation-induced liver disease (RILD). Pre-clinical hepatic irradiation models can provide clinicians with better understanding of the radiation tolerance of the liver, which in turn may lead to the development of more effective cancer treatments. Previous models of hepatic irradiation are limited by either invasive laparotomy procedures, or the need to irradiate the whole or large parts of the liver using external skin markers. In the setting of modern-day radiation oncology, a truly translational animal model would require the ability to deliver RT to specific parts of the liver, through non-invasive image guidance methods. To this end, we developed a targeted hepatic irradiation model on the Small Animal Radiation Research Platform (SARRP) using contrast-enhanced cone-beam computed tomography image guidance. Using this model, we showed evidence of the early development of region-specific RILD through functional single photon emission computed tomography (SPECT) imaging.

13.
Strahlenther Onkol ; 194(10): 944-952, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29947818

RESUMEN

BACKGROUND AND PURPOSE: Recently, imaging and high-precision irradiation devices for preclinical tumor models have been developed. Image-guided radiation therapy (IGRT) including innovative treatment planning techniques comparable to patient treatment can be achieved in a translational context. The study aims to evaluate magnetic resonance imaging/computed tomography (MRI/CT)-based treatment planning with different treatment techniques for high-precision radiation therapy (RT). MATERIALS AND METHODS: In an orthotopic pancreatic cancer model, MRI/CT-based radiation treatment planning was established. Three irradiation techniques (rotational, 3D multifield, stereotactic) were performed with the SARRP system (Small Animal Radiation Research Platform, Xstrahl Ltd., Camberley, UK). Dose distributions in gross tumor volume (GTV) and organs at risk (OAR) were analyzed for each treatment setting. RESULTS: MRI with high soft tissue contrast improved imaging of GTV and OARs. Therefore MRI-based treatment planning enables precise contouring of GTV and OARs, thus, providing a perfect basis for an improved dose distribution and coverage of the GTV for all advanced radiation techniques. CONCLUSION: An MRI/CT-based treatment planning for high-precision IGRT using different techniques was established in an orthotopic pancreatic tumor model. Advanced radiation techniques allow considering perfect coverage of GTV and sparing of OARs in the preclinical setting and reflect clinical treatment plans of pancreatic cancer patients.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias Experimentales/radioterapia , Neoplasias Pancreáticas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Animales , Línea Celular Tumoral , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Investigación Biomédica Traslacional
14.
Radiat Oncol ; 13(1): 104, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859114

RESUMEN

BACKGROUND: Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases' responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. METHODS: Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. RESULTS: In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. CONCLUSIONS: Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to understand radio-resistance in brain metastases.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Encéfalo/efectos de la radiación , Neoplasias de la Mama/patología , Irradiación Craneana/métodos , Modelos Animales de Enfermedad , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Histonas/metabolismo , Histonas/efectos de la radiación , Humanos , Estudios Longitudinales , Ratones , Ratones Desnudos , Fosforilación/efectos de la radiación , Tolerancia a Radiación/fisiología , Dosificación Radioterapéutica , Rayos X
15.
Dose Response ; 15(1): 1559325816685798, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28203121

RESUMEN

BACKGROUND AND PURPOSE: Currently, no readily available mitigators exist for acute abdominal radiation injury. Here, we present an animal model for precise and homogenous limb-sparing abdominal irradiation (LSAIR) to study the radiation-induced gastrointestinal syndrome (RIGS). MATERIALS AND METHODS: The LSAIR technique was developed using the small animal radiation research platform (SARRP) with image guidance capabilities. We delivered LSAIR at doses between 14 and 18 Gy on 8- to 10-week-old male C57BL/6 mice. Histological analysis was performed to confirm that the observed mortality was due to acute abdominal radiation injury. RESULTS: A steep dose-response relationship was found for survival, with no deaths seen at doses below 16 Gy and 100% mortality at above 17 Gy. All deaths occurred between 6 and 10 days after irradiation, consistent with the onset of RIGS. This was further confirmed by histological analysis showing clear differences in the number of regenerative intestinal crypts between animals receiving sublethal (14 Gy) and 100% lethal (18 Gy) radiation. CONCLUSION: The developed LSAIR technique provides uniform dose delivery with a clear dose response, consistent with acute abdominal radiation injury on histological examination. This model can provide a useful tool for researchers investigating the development of mitigators for accidental or clinical high-dose abdominal irradiation.

16.
Z Med Phys ; 27(1): 56-64, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27320149

RESUMEN

PURPOSE: In radiation therapy of small animals treatment depths range from a few millimetres to several centimetres. In order to spare surrounding organs at risk steep dose gradients are necessary. To minimize the treatment time, and therefore the strain to the animals, a high dose rate is required. A description how these parameters can be optimized through an appropriate choice of collimators with different source surface distances (SSD) as well as different materials and geometries is presented. MATERIAL AND METHODS: An industrial micro-CT unit (Y.Fox, YXLON GmbH, Hamburg, Germany) was converted into a precision irradiator for small animals. Different collimators of either stainless steel (Fe) with cylindrical bores (SSD=42mm) or tungsten (W) with conical bores (SSD=14mm) were evaluated. The dosimetry of very small radiation fields presents a challenge and was performed with GafChromic EBT3 films (Ashland, Vayne, KY, USA) in a water phantom. The films were calibrated with an ionization chamber in the uncollimated field. Treatments were performed via a rotation of the objects with a fixed radiation source. RESULTS: As expected, the shorter SSD of the W-collimators resulted in a (4.5±1.6)-fold increase of the dose rates compared to the corresponding Fe-collimators. The ratios of the dose rates at 1mm and 10mm depth in the water phantom was (2.6±0.2) for the Fe- and (4.5±0.1) for the W-collimators. For rotational treatments in a cylindrical plastic phantom maximum dose rates of up to 1.2Gy/min for Fe- and 5.1Gy/min for W-collimators were measured. CONCLUSION: Choosing the smallest possible SSD leads to a high dose rate and a high surface dose, which is of advantage for the treatment of superficial target volumes. For larger SSD the dose rate is lower and the depth dose curve is shallower. This leads to a reduction of the surface dose and is best suited for treatments of deeper seated target volumes. Divergent collimator bores have, due to the reduced scatter within the collimators, a steeper penumbra. The dosimetry of small kilovoltage beams with Gafchromic EBT3 films in a water phantom has proven successful.


Asunto(s)
Microtomografía por Rayos X/instrumentación , Animales , Calibración , Alemania , Fantasmas de Imagen , Exposición a la Radiación/prevención & control , Radiometría , Dosificación Radioterapéutica
17.
Radiother Oncol ; 116(3): 467-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26163089

RESUMEN

BACKGROUND AND PURPOSE: Glioblastoma multiforme is the most common malignant brain tumor. Standard treatment including surgery, radiotherapy and chemotherapy with temozolomide is not curative. There is a great need for in vitro and in vivo models closely mimicking clinical practice to ensure better translation of novel preclinical findings. METHODS AND MATERIALS: A 3D spheroid model was established using the U87MG cell line. The efficacy of temozolomide, RT and combinations was assessed using growth delay assays. Orthotopic glioblastoma tumors were established, different radiation doses delivered based on micro-CT based treatment planning (SmART-plan) and dose volume histograms (DVH) were determined. Tumor growth was monitored using bioluminescent imaging. RESULTS: 3D spheroid cultures showed a dose-dependent growth delay upon single and combination treatments. Precise uniform radiation was achieved in all in vivo treatment groups at all doses tested, and DVHs showed accurate dose coverage in the planning target volume which resulted in tumor growth delay. CONCLUSION: We demonstrate that 3D spheroid technology can be reliably used for treatment efficacy evaluation and that mimicking a clinical setting is also possible in small animals. Both these in vitro and in vivo techniques can be combined for clinically relevant testing of novel drugs combined with radiation.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/terapia , Quimioradioterapia/métodos , Dacarbazina/análogos & derivados , Glioblastoma/terapia , Animales , Línea Celular Tumoral , Terapia Combinada , Dacarbazina/farmacología , Progresión de la Enfermedad , Ratones SCID , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia Guiada por Imagen/métodos , Esferoides Celulares , Temozolomida
18.
Proc SPIE Int Soc Opt Eng ; 8668: 866830, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25745539

RESUMEN

The current Small Animal Radiation Research Platform (SARRP) is poor for localizing small soft tissue targets for irradiation or tumor models growing in a soft tissue environment. Therefore, an imaging method complementary to x-ray CT is required to localize the soft tissue target's Center of Mass (CoM) to within 1 mm. In this paper, we report the development of an integrated x-ray/bioluminescence imaging/tomography (BLI/BLT) system to provide a pre-clinical, high resolution irradiation system. This system can be used to study radiation effects in small animals under the conebeam computed tomography (CBCT) imaging guidance by adding the bioluminescence imaging (BLI) system as a standalone system which can also be docked onto the SARRP. The proposed system integrates two robotic rotating stages and an x-ray source rated at maximum 130 kVp and having a small variable focal spot. A high performance and low noise CCD camera mounted in a light-tight housing along with an optical filter assembly is used for multi-wavelength BL tomography. A three-mirror arrangement is implemented to eliminate the need of rotating the CCD camera for acquiring multiple views. The mirror system is attached to a motorized stage to capture images in angles between 0-90° (for the standalone system). Camera and CBCT calibration are accomplished.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA