Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276130

RESUMEN

Intrinsically disordered proteins (IDPs) are emerging therapeutic targets for human diseases. However, probing their transient conformations remains challenging because of conformational heterogeneity. To address this problem, we developed a biosensor using a point-functionalized silicon nanowire (SiNW) that allows for real-time sampling of single-molecule dynamics. A single IDP, N-terminal transactivation domain of tumor suppressor protein p53 (p53TAD1), was covalently conjugated to the SiNW through chemical engineering, and its conformational transition dynamics was characterized as current fluctuations. Furthermore, when a globular protein ligand in solution bound to the targeted p53TAD1, protein-protein interactions could be unambiguously distinguished from large-amplitude current signals. These proof-of-concept experiments enable semiquantitative, realistic characterization of the structural properties of IDPs and constitute the basis for developing a valuable tool for protein profiling and drug discovery in the future.

2.
Methods Mol Biol ; 2819: 189-223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028508

RESUMEN

All DNA-binding proteins in vivo exist as a population of freely diffusing molecules and of DNA-bound molecules. The molecules bound to DNA can be split into specifically/tightly and nonspecifically bound proteins. Single-molecule tracking (SMT) is a method allowing to visualize protein dynamics in living cells, revealing their behavior in terms of mode of motion, diffusion coefficient/speed, change of dwell times, and unveiling preferred subcellular sites of dwelling. Bleaching-type SMT or fluorescent protein-tagged SMT involves rapid laser-induced bleaching of most fluorophore-labeled molecules. The remaining single fluorescent proteins are then continuously tracked. The trajectories of several fluorescent molecules per cell for a population of cells are analyzed and combined to permit a robust analysis of average behavior of single molecules in live cells, including analyses of protein dynamics in mutant cells or cells exposed to changes in environmental conditions.In this chapter, we describe the preparation of Bacillus subtilis cells, the recording of movies of those cells expressing a monomeric variant of a yellow fluorescent protein (mNeonGreen) fused to a protein of choice, and the subsequent curation of the movie data including the statistical analysis of the protein dynamics. We present a short overview of the analysis program SMTracker 2.0, highlighting its ability to analyze SMT data by non-expert scientists.


Asunto(s)
Bacillus subtilis , Proteínas de Unión al ADN , Imagen Individual de Molécula , Imagen Individual de Molécula/métodos , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Microscopía Fluorescente/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética
3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569469

RESUMEN

ß barrels are ubiquitous proteins in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. These transmembrane proteins (TMPs) execute a wide variety of tasks. For example, they can serve as transporters, receptors, membrane-bound enzymes, as well as adhesion, structural, and signaling elements. In addition, multimeric ß barrels are common structural scaffolds among many pore-forming toxins. Significant progress has been made in understanding the functional, structural, biochemical, and biophysical features of these robust and versatile proteins. One frequently encountered fundamental trait of all ß barrels is their voltage-dependent gating. This process consists of reversible or permanent conformational transitions between a large-conductance, highly permeable open state and a low-conductance, solute-restrictive closed state. Several intrinsic molecular mechanisms and environmental factors modulate this universal property of ß barrels. This review article outlines the typical signatures of voltage-dependent gating. Moreover, we discuss recent developments leading to a better qualitative understanding of the closure dynamics of these TMPs.


Asunto(s)
Proteínas de Transporte de Membrana , Porinas , Porinas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Conformación Molecular , Biofisica , Proteínas de la Membrana Bacteriana Externa/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(30): e2208067119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867820

RESUMEN

Classical cadherins play key roles in cell-cell adhesion. The adhesion process is thought to comprise mainly two steps: X-dimer and strand-swap (SS-) dimer formation of the extracellular domains (ectodomains) of cadherins. The dimerization mechanism of this two-step process has been investigated for type I cadherins, including E-cadherin, of classical cadherins, whereas other binding states also have been proposed, raising the possibility of additional binding processes required for the cadherin dimerization. However, technical limitations in observing single-molecule structures and their dynamics have precluded the investigation of the dynamic binding process of cadherin. Here, we used high-speed atomic force microscopy (HS-AFM) to observe full-length ectodomains of E-cadherin in solution and identified multiple dimeric structures that had not been reported previously. HS-AFM revealed that almost half of the cadherin dimers showed S- (or reverse S-) shaped conformations, which had more dynamic properties than the SS- and X-like dimers. The combined HS-AFM, mutational, and molecular modeling analyses showed that the S-shaped dimer was formed by membrane-distal ectodomains, while the binding interface was different from that of SS- and X-dimers. Furthermore, the formation of the SS-dimer from the S-shaped and X-like dimers was directly visualized, suggesting the processes of SS-dimer formation from S-shaped and X-dimers during cadherin dimerization.


Asunto(s)
Cadherinas , Microscopía de Fuerza Atómica , Multimerización de Proteína , Animales , Cadherinas/química , Adhesión Celular , Humanos , Ratones , Microscopía de Fuerza Atómica/métodos
5.
ACS Nano ; 15(8): 12804-12814, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34018713

RESUMEN

Singular reaction events of small molecules and their dynamics remain a hardly understood territory in chemical sciences since spectroscopy relies on ensemble-averaged data, and microscopic scanning probe techniques show snapshots of frozen scenes. Herein, we report on continuous high-resolution transmission electron microscopic video imaging of the electron-beam-induced bottom-up synthesis of fullerene C60 through cyclodehydrogenation of tailor-made truxene derivative 1 (C60H30), which was deposited on graphene as substrate. During the reaction, C60H30 transformed in a multistep process to fullerene C60. Hereby, the precursor, metastable intermediates, and the product were identified by correlations with electron dose-corrected molecular simulations and single-molecule statistical analysis, which were substantiated with extensive density functional theory calculations. Our observations revealed that the initial cyclodehydrogenation pathway leads to thermodynamically favored intermediates through seemingly classical organic reaction mechanisms. However, dynamic interactions of the intermediates with the substrate render graphene as a non-innocent participant in the dehydrogenation process, which leads to a deviation from the classical reaction pathway. Our precise visual comprehension of the dynamic transformation implies that the outcome of electron-beam-initiated reactions can be controlled with careful molecular precursor design, which is important for the development and design of materials by electron beam lithography.

6.
Front Microbiol ; 11: 1946, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973704

RESUMEN

The movement of filamentous, actin-like MreB and of enzymes synthesizing the bacterial cell wall has been proposed to be highly coordinated. We have investigated the motion of MreB and of RodA and PbpH cell wall synthesis enzymes at 500 ms and at 20 ms time scales, allowing us to compare the motion of entire MreB filaments as well as of single molecules with that of the two synthesis proteins. While all three proteins formed assemblies that move with very similar trajectory orientation and with similar velocities, their trajectory lengths differed considerably, with PbpH showing shortest and MreB longest trajectories. These experiments suggest different on/off rates for RodA and PbpH at the putative peptidoglycan-extending machinery (PGEM), and during interaction with MreB filaments. Single molecule tracking revealed distinct slow-moving and freely diffusing populations of PbpH and RodA, indicating that they change between free diffusion and slow motion, indicating a dynamic interaction with the PGEM complex. Dynamics of MreB molecules and the orientation and speed of filaments changed markedly after induction of salt stress, while there was little change for RodA and PbpH single molecule dynamics. During the stress adaptation phase, cells continued to grow and extended the cell wall, while MreB formed fewer and more static filaments. Our results show that cell wall synthesis during stress adaptation occurs in a mode involving adaptation of MreB dynamics, and indicate that Bacillus subtilis cell wall extension involves an interplay of enzymes with distinct binding kinetics to sites of active synthesis.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118778, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32810779

RESUMEN

Glutathione peroxidases (GPXs) regulate the levels of reactive oxygen species in cells and tissues. During the redox cycling, the plant GPX is regenerated by thioredoxins (TRXs) as reductant rather than glutathione as the electron donor. However, the direct experimental observation on the interaction dynamics between GPXs and TRXs has not been reported, and the redox mechanism is unclear. In this work, the protein interactions between oxidized AtGPX3 and reduced AtTRXh9 have been studied using single-molecule fluorescence resonance energy transfer (smFRET). The obtained results indicate there are four processes in these two protein interaction, including biological recognition, binding, intermediate and unbinding state. Two enzymatic reaction intermediate states have been identified in the dissociation of AtGPX3-AtTRXh9 complex from binding to unbinding state, suggesting two types of interaction pathways and intermediate complexes. In particular, the dynamical study reveals that the redox reaction between oxidized AtGPX3 and reduced AtTRXh9 is realized through the forming and breaking of disulfide bonds via the active sites of Cys4 and Cys57 in AtTRXh9. These findings are of significant for deep understanding the redox reaction and mechanism between GPXs and TRXs enzymes, and studying other protein dynamics at single-molecule level.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Oxidación-Reducción , Tiorredoxinas/metabolismo
8.
ACS Nano ; 14(9): 11178-11189, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32816453

RESUMEN

Molecular motion and bond dissociation are two of the most fundamental phenomena underpinning the properties of molecular materials. We entrapped HF and H2O molecules within the fullerene C60 cage, encapsulated within a single-walled carbon nanotube (X@C60)@SWNT, where X = HF or H2O. (X@C60)@SWNT represents a class of molecular nanomaterial composed of a guest within a molecular host within a nanoscale host, enabling investigations of the interactions of isolated single di- or triatomic molecules with the electron beam. The use of the electron beam simultaneously as a stimulus of chemical reactions in molecules and as a sub-angstrom resolution imaging probe allows investigations of the molecular dynamics and reactivity in real time and at the atomic scale, which are probed directly by chromatic and spherical aberration-corrected high-resolution transmission electron microscopy imaging, or indirectly by vibrational electron energy loss spectroscopy in situ during scanning transmission electron microscopy experiments. Experimental measurements indicate that the electron beam triggers homolytic dissociation of the H-F or H-O bonds, respectively, causing the expulsion of the hydrogen atoms from the fullerene cage, leaving fluorine or oxygen behind. Because of a difference in the mechanisms of penetration through the carbon lattice available for F or O atoms, atomic fluorine inside the fullerene cage appears to be more stable than the atomic oxygen under the same conditions. The use of (X@C60)@SWNT, where each molecule X is "packaged" separately from each other, in combination with the electron microscopy methods and density functional theory modeling in this work, enable bond dynamics and reactivity of individual atoms to be probed directly at the single-molecule level.

9.
mBio ; 11(2)2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156823

RESUMEN

Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient.IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis Thus, local-pool signal transduction operates extremely efficiently and specifically.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Proteínas Bacterianas/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno/genética , Transducción de Señal
10.
ACS Nano ; 11(12): 12789-12795, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29215860

RESUMEN

F1-ATPase (F1) is a bidirectional molecular motor that hydrolyzes nearly all ATPs to fuel the cellular processes. Optical observation of labeled F1 rotation against the α3ß3 hexamer ring revealed the sequential mechanical rotation steps corresponding to ATP binding/ADP release and ATP hydrolysis/Pi release. These substeps originate from the F1 rotation but with heavy load on the γ shaft due to fluorescent labeling and the photophysical limitation of an optical microscope, which hampers better understanding of the intrinsic kinetic behavior of ATP hydrolysis. In this work, we present a method capable of electrically monitoring ATP hydrolysis of a single label-free F1 in real time by using a high-gain silicon nanowire-based field-effect transistor circuit. We reproducibly observe the regular current signal fluctuations with two distinct levels, which are induced by the binding dwell and the catalytic dwell, respectively, in both concentration- and temperature-dependent experiments. In comparison with labeled F1, the hydrolysis rate of nonlabeled F1 used in this study is 1 order of magnitude faster (1.69 × 108 M-1 s-1 at 20 °C), and the differences between two sequential catalytic rates are clearer, demonstrating the ability of nanowire nanocircuits to directly probe the intrinsic dynamic processes of the biological activities with single-molecule/single-event sensitivity. This approach is complementary to traditional optical methods, offering endless opportunities to unravel molecular mechanisms of a variety of dynamic biosystems under realistic physiological conditions.

11.
ACS Nano ; 11(12): 12202-12209, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29165985

RESUMEN

Amyloid ß-protein (Aß) oligomers are emerging as potent neurotoxic species in Alzheimer's disease pathogenesis. Detailed characterization of oligomer structure and dynamics is necessary to develop oligomer-specific therapeutic agents. However, oligomers exist transiently, which complicates their structural analysis. One approach to mitigate these problems has been photochemical cross-linking of native oligomers. In these states, the oligomers can be isolated and purified for physical and chemical studies. Here we characterized the structure of isolated cross-linked Aß42 trimers, pentamers, and heptamers with atomic force microscopy (AFM) imaging and probed their dynamics in solution using time-lapse high-speed AFM. This technique enables visualization of the structural dynamics of the oligomers at nanometer resolution on a millisecond time scale. Results demonstrate that cross-linked pentamers and heptamers are very dynamic fluctuating between a compact single-globular and multiglobular assemblies. Trimers remain in their single-globular geometry that elongates adopting an ellipsoidal shape. Biological significance of oligomers dynamics is discussed.


Asunto(s)
Péptidos beta-Amiloides/química , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Nanopartículas/química , Péptidos beta-Amiloides/aislamiento & purificación , Humanos , Conformación Proteica
12.
Extremophiles ; 21(2): 369-379, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28074284

RESUMEN

Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.


Asunto(s)
Proteínas Arqueales/química , Proteínas de Unión al ADN/química , ARN de Archaea/química , Proteínas de Unión al ARN/química , Sulfolobus solfataricus/química , Proteínas Arqueales/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN de Archaea/metabolismo , Proteínas de Unión al ARN/metabolismo , Sulfolobus solfataricus/metabolismo
13.
Mol Hum Reprod ; 22(3): 172-81, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26316520

RESUMEN

In recent years, advances in imaging probes, cutting-edge microscopy techniques and powerful bioinformatics image analysis have markedly expanded the imaging toolbox available to developmental biologists. Apart from traditional qualitative studies, embryonic development can now be investigated in vivo with improved spatiotemporal resolution, with more detailed quantitative analyses down to the single-cell level of the developing embryo. Such imaging tools can provide many benefits to investigate the emergence of the asymmetry in the early mammalian embryo. Quantitative single-cell imaging has provided a deeper knowledge of the dynamic processes of how and why apparently indistinguishable cells adopt separate fates that ensure proper lineage allocation and segregation. To advance our understanding of the mechanisms governing such cell fate decisions, we will need to address current limitations of fluorescent probes, while at the same time take on challenges in image processing and analysis. New discoveries and developments in quantitative, single-cell imaging analysis will ultimately enable a truly comprehensive, multi-dimensional and multi-scale investigation of the dynamic morphogenetic processes that work in concert to shape the embryo.


Asunto(s)
Embrión de Mamíferos/citología , Desarrollo Embrionario , Análisis de la Célula Individual , Animales , Tipificación del Cuerpo , Linaje de la Célula , Diagnóstico por Imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Factores de Transcripción/metabolismo
14.
J Phys Chem Lett ; 6(20): 4032-7, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26706166

RESUMEN

Coherent control uses tailored femtosecond pulse shapes to influence quantum pathways and drive a light-induced process toward a specific outcome. There has been a long-standing debate whether the absorption properties or the probability for population to remain in an excited state of a molecule can be influenced by the pulse shape, even if only a single photon is absorbed. Most such experiments are performed on many molecules simultaneously, so that ensemble averaging reduces the access to quantum effects. Here, we demonstrate systematic coherent control experiments on the fluorescence intensity of a single molecule in the weak-field limit. We demonstrate that a delay scan of interfering pulses reproduces the excitation spectrum of the molecule upon Fourier transformation, but that the spectral phase of a pulse sequence does not affect the transition probability. We generalize this result to arbitrary pulse shapes by performing the first closed-loop coherent control experiments on a single molecule.

15.
J Biol Phys ; 31(3-4): 339-50, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23345902

RESUMEN

Even under physiological conditions, the DNA double-helix spontaneously denatures locally, opening up fluctuating, flexible, single-stranded zones called DNA-bubbles. We present a dynamical description of this DNA-bubble breathing in terms of a Fokker-Planck equation for the bubble size, based on the Poland-Scheraga free energy for DNA denaturation. From this description, we can obtain basic quantities such as the lifetime, an important measure for the description of the interaction of a breathing DNA molecule and selectively single-stranded DNA binding proteins. Our approach is consistent with recent single molecule measurements of bubble fluctuation. We also introduce a master equation approach to model DNA breathing, and discuss its differences from the continuous Fokker-Planck description.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA