RESUMEN
Environmental implications of climate change are complex and exhibit regional variations both within and between the polar regions. The increase of solar UV radiation flux over Antarctica due to stratospheric ozone depletion creates the optimal conditions for photochemical reactions on the snow. Modeling, laboratory, and indirect field studies suggest that snowpack process release gases to the atmosphere that can react on sea salt particles in remote regions such as Antarctica, modifying aerosol composition and physical properties of aerosols. Here, we present evidence of photochemical processing in West Antarctica aerosols using microscopic and chemical speciation of individual atmospheric particles. Individual aerosol particles collected at the Brazilian module Criosfera 1 were analyzed by scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) combined with computer-controlled scanning electron microscopy (CCSEM) with energy-dispersive X-ray (EDX) microanalysis. The displacement of chlorine relative to sodium was observed over most of the sea salt particles. Particles with a chemical composition consistent with NaCl-NO3 contributed up to 30% of atmospheric particles investigated. Overall, this study provides evidence that the snowpack and particulate nitrate photolysis should be considered in dynamic partition equilibrium in the troposphere. These findings may assist in reducing modeling uncertainties and present new insights into the aerosol chemical composition in the polar environment.
RESUMEN
Serpentine and amphibole asbestos occur naturally in certain geologic settings worldwide, most commonly in association with ultramafic rocks, along associated faults. Ultramafic rocks have been used in Piên County, Southern Brazil for decades for the purpose of road paving in rural and urban areas, but without the awareness of their adverse environmental and health impact. The aim of this study was the chemical characterization of aerosols re-suspended in two rural roads of Piên, paved with ultramafic rocks and to estimate the pulmonary deposition of asbestos aerosols. Bulk aerosol samples were analyzed by means of X-ray fluorescence spectrometry and X-ray diffraction analysis, in order to characterize elemental composition and crystallinity. Single-particle compositions of aerosols were analyzed by computer-controlled electron-probe microanalysis, indicating the presence of a few percentages of serpentine and amphibole. Given the chemical composition and size distribution of aerosol particles, the deposition efficiency of chrysotile, a sub-group of serpentine, in two principal segments of the human respiratory system was estimated using a lung deposition model. As an important finding, almost half of the inhaled particles were calculated to be deposited in the respiratory system. Asbestos depositions were significant (â¼25 %) in the lower airways, even though the selected breathing conditions (rest situation, nose breathing) implied the lowest rate of respiratory deposition. Considering the fraction of inhalable suspended chrysotile near local roads, and the long-term exposure of humans to these aerosols, chrysotile may represent a hazard, regarding more frequent development of lung cancer in the population of the exposed region.