Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Talanta ; 280: 126716, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173250

RESUMEN

The small molecule aldehydes are volatile organic compounds (VOCs), possessing cytotoxicity and carcinogenicity. Long-term exposure can pose a serious threat to human health. Based on an in-situ reduction colorimetric method to generate silver nanoparticles and induce colorimetric response, we proposed a silver-loaded paper-based colorimetric sensor array for visually detecting and differentiating five relatively common trace small molecule aldehyde gases. The silver ions are immobilized onto a porous filter paper and stabilized by complexing agents of branched polyethyleneimine, ethylenediamine, and 1,6-diaminohexane, respectively. The as-fabricated sensor array expresses remarkable stability and capacity to resist humidity. The qualitative analysis reveals that the sensor array has excellent selectivity for aldehyde gases and displays remarkable anti-interference ability. The quantitative analysis indicates that the sensor array exhibits superior sensitivity for five aldehyde gases, with limits of detection (LODs) of 9.0 ppb for formaldehyde (FA), 3.1 ppm for acetaldehyde (AA), 3.5 ppm for propionaldehyde (PA), 23.8 ppb for glutaric dialdehyde (GD), and 71.5 ppb for hydroxy formaldehyde (HF), respectively. Importantly, these LODs are all comfortably below their respective permissible exposure limits. A unique colorimetric response fingerprint is observed for each analyte. Standard chemometric methods illustrate that the sensor array has excellent clustering capability for these aldehyde gases. Additionally, the sensor array's response is irreversible and possesses outstanding performance for cumulative monitoring. This colorimetric sensor array based on silver ions reduced to silver nanoparticles offers a novel detection method for the continuous, ultrasensitive, and visual detection of trace airborne pollutants.

2.
Methods Mol Biol ; 2835: 307-315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105926

RESUMEN

Cell therapy and engineered tissue creation based on the use of human stem cells involves cell isolation, expansion, and cell growth and differentiation on the scaffolds. Microbial infections dramatically can affect stem cell survival and increase the risk of implant failure. To prevent these events, it is necessary to develop new materials with antibacterial properties for coating scaffold surfaces as well as medical devices, and all other surfaces at high risk of contamination. This chapter describes strategies for obtaining antibacterial blends for coating inert surfaces (polymethylmethacrylate, polycarbonate, Carbon Fiber Reinforced Polymer (CFRP)). In particular, the procedures for preparing antibacterial blends by mixing polymer resins with two types of antibacterial additives and depositing these blends on inert surfaces are described.


Asunto(s)
Células Madre , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Células Madre/citología , Propiedades de Superficie , Andamios del Tejido/química , Antibacterianos/farmacología , Cemento de Policarboxilato/química , Técnicas de Cultivo de Célula/métodos , Polimetil Metacrilato/química , Fibra de Carbono/química , Carbono/química , Antiinfecciosos/farmacología
3.
Nano Lett ; 24(32): 9868-9873, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093303

RESUMEN

The coefficients of piezoelectricity and thermal expansion are generally positive due to the bond anharmonicity. For converse piezoelectricity, the electrostrain obtained in prevalent ceramics is only around 1%. Here we propose that the coordination transition of metal cations may make a paradigm shift. Through first-principles calculations, we predict a series of low-energy phases with distinct coordinations for Ag ions in superionic conductor AgCrX2 (X = S, Se), including ferroelectric and nonpolar phases with distinct interlayer distances. The mobile feature of Ag ions, which can be attributed to its complex coordination chemistry, can facilitate transformation between various coordination phases. Such facile transitions with ultralow barriers can be driven by applying either pressure, an electric field, or a change in temperature, giving rise to various exotic effects, including electrostrain, negative piezoelectricity, and negative thermal expansion. All with unprecedented giant constants, those mechanisms stem from the coordination transitions, distinct from the weak linear effects in previous reports.

4.
Colloids Surf B Biointerfaces ; 243: 114131, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39094211

RESUMEN

Identifying the antibacterial mechanisms of elemental silver at the nanoscale remains a significant challenge due to the intertwining behaviors between the particles and their released ions. The open question is which of the above factor dominate the antibacterial behaviors when silver nanoparticles (Ag NPs) with different sizes. Considering the high reactivity of Ag NPs, prior research has primarily concentrated on coated particles, which inevitably hinder the release of Ag+ ions due to additional chemical agents. In this study, we synthesized various Ag NPs, both coated and uncoated, using the laser ablation in liquids (LAL) technique. By analyzing both the changes in particle size and Ag+ ions release, the impacts of various Ag NPs on the cellular activity and morphological changes of gram-negative (E. coil) and gram-positive (S. aureus) bacteria were evaluated. Our findings revealed that for uncoated Ag NPs, smaller particles exhibited greater ions release efficiency and enhanced antibacterial efficacy. Specifically, particles approximately 1.5 nm in size released up to 55 % of their Ag+ ions within 4 h, significantly inhibiting bacterial growth. Additionally, larger particles tended to aggregate on the bacterial cell membrane surface, whereas smaller particles were more likely to be internalized by the bacteria. Notably, treatment with smaller Ag NPs led to more pronounced bacterial morphological changes and elevated levels of intracellular reactive oxygen species (ROS). We proposed that the bactericidal activity of Ag NPs stems from the synergistic effect between particle-cell interaction and the ionic silver, which is dependent on the crucial parameter of particle size.


Asunto(s)
Antibacterianos , Iones , Rayos Láser , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata , Staphylococcus aureus , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Iones/química , Escherichia coli/efectos de los fármacos , Propiedades de Superficie , Especies Reactivas de Oxígeno/metabolismo
5.
Biotechniques ; 76(8): 371-379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041678

RESUMEN

Methods for sequence-specific microRNA (miRNA) analysis are crucial for miRNA research and guiding nursing strategies. We have devised a colorimetric technique for detecting miRNA using a dumbbell probe-based polymerase/endonuclease assisted chain displacement, along with silver ions (Ag+) aptamer assisted color reaction. The suggested approach enables precise measurement of miRNA-21 within the concentration range of 100 fM-5 nM, with a low detection limit of 45.32 fM. Additionally, it exhibits exceptional capability in distinguishing variations at the level of individual nucleotides. Furthermore, the detection technique may be utilized to precisely measure the amount of miRNA-21 in serum samples, demonstrating a high level of concordance with the findings obtained from a commercially available miRNA detection kit.


This method utilizes the hairpin structure in the dumbbell probe to significantly enhance the accuracy of target recognition in the polymerase/endonuclease assisted chain displacement strategy. As a result, the method gains a superior capability to discriminate between target miRNA and interfering miRNAs. The combination of target recycling and the polymerase/endonuclease assisted chain displacement strategy allows for highly sensitive analysis of miRNA, which is either superior or comparable to previous colorimetric methods for miRNA detection. This approach is simple, economical and extremely specific for detecting miRNA. It holds great potential for clinical use, particularly in guiding the adaptation of nursing techniques.


Asunto(s)
Colorimetría , MicroARNs , Colorimetría/métodos , MicroARNs/sangre , MicroARNs/genética , MicroARNs/análisis , Humanos , Límite de Detección , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Endonucleasas/genética , Plata/química , Técnicas Biosensibles/métodos
6.
Int J Biol Macromol ; 276(Pt 2): 134000, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032878

RESUMEN

The recovery of silver ions from wastewater is of great importance due to their adverse environmental impact and significant economic value. This paper introduces a novel adsorbent (CS-AHMT) that can be easily synthesized via a one-step functionalization of chitosan with 4-Amino-3-hydrazino-1,2,4-triazol-5-thiol to efficiently recover silver ions from actual wastewater. CS-AHMT demonstrated superior adsorption performance, achieving an adsorption capacity of 241.4 mg·g-1 at pH 5 and 318 K, and the adsorption equilibrium was rapidly attained within 60 to 120 min. Kinetic and isotherm studies indicate that the adsorption process conforms to the pseudo-nth-order (PNO) and Sips models, suggesting a monolayer adsorption that incorporates both physical and chemical processes, with internal mass transfer being the primary rate-limiting step. Electrostatic and coordination interactions are primarily involved in the adsorption mechanism of silver ions on CS-AHMT, as further validated by density functional theory (DFT) calculations. The selectivity and practical applicability of CS-AHMT were confirmed in real wastewater containing high concentrations of competing ions. The findings underscore the potential of CS-AHMT as an effective adsorbent for silver ion recovery in wastewater treatment applications.


Asunto(s)
Quitosano , Nitrógeno , Plata , Azufre , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Plata/química , Aguas Residuales/química , Adsorción , Nitrógeno/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Azufre/química , Purificación del Agua/métodos , Iones/química , Concentración de Iones de Hidrógeno
7.
Int J Nanomedicine ; 19: 6981-6997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005961

RESUMEN

Background: Enterococcus faecalis (E. faecalis) is one of the main pathogens responsible for refractory root canal infections in the teeth and shows resistance against various antibacterial managements. Effective control of E. faecalis infection is a prerequisite for successful treatment of refractory apical periodontitis. This study aimed to analyze the antibacterial activity and mechanisms of Au@Ag nanoparticles (NPs) combined with photothermal therapy (PTT) against the original and Ag+-resistant E. faecalis. Methods: Au@AgNPs with optimal shell thicknesses were synthesized and characterized. The antibacterial activity of Au@AgNPs with PTT against the original or Ag+-resistant E. faecalis was evaluated, and the antibiofilm activity was tested on E. faecalis biofilm on the dentin of teeth. The potential antibacterial mechanisms of Au@AgNPs combined with PTT against E. faecalis have also been studied. Moreover, its influence on dentin microhardness and cytotoxicity was assessed. Results: This study revealed that Au@AgNPs combined with PTT showed enhanced antibacterial and antibiofilm effects, no negative effects on dentin microhardness, and low cytotoxicity toward human periodontal ligament cells (hPDLCs). Moreover, Au@AgNPs combined with PTT effectively inhibited the growth of Ag+-resistant E. faecalis. Its antibacterial effects may be exerted through the release of silver ions (Ag+), destruction of the cell membrane, production of reactive oxygen species (ROS) and inhibition of adenosine triphosphate (ATP) production. Hyperthermia generated by Au@AgNPs with PTT reduced membrane fluidity and enhanced Ag+ sensitivity by downregulating fabF expression. The upregulated expression of heat shock genes demonstrated that the Ag+ released from Au@AgNPs compromised the heat adaptation of E. faecalis. Conclusion: PTT significantly enhanced Ag+ sensitivity of the original and Ag+-resistant E. faecalis. Au@AgNPs combined with PTT may have the potential to be developed as a new antibacterial agent to control E. faecalis infections in teeth.


Asunto(s)
Antibacterianos , Biopelículas , Dentina , Enterococcus faecalis , Oro , Nanopartículas del Metal , Plata , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Enterococcus faecalis/efectos de los fármacos , Humanos , Oro/química , Oro/farmacología , Nanopartículas del Metal/química , Dentina/química , Dentina/efectos de los fármacos , Biopelículas/efectos de los fármacos , Terapia Fototérmica/métodos , Pruebas de Sensibilidad Microbiana , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Rayos Infrarrojos , Especies Reactivas de Oxígeno/metabolismo
8.
World J Microbiol Biotechnol ; 40(7): 231, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833075

RESUMEN

To investigate the mechanism of Triton X-100 (TX-100) reducing the Ag+-resistance of Enterococcus faecalis (E. faecalis), and evaluate the antibacterial effect of TX-100 + Ag+ against the induced Ag+-resistant E. faecalis (AREf). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of AgNO3 against E. faecalis with/without TX-100 were determined to verify the enhanced antibacterial activity. Transmission electron microscopy (TEM) was used to observe the morphological changes of E. faecalis after treatment. The intra- and extracellular concentration of Ag+ in treated E. faecalis was evaluated using inductively coupled plasma mass spectrometer (ICP-MS). The changes in cell membrane potential and integrity of treated E. faecalis were also observed using the flow cytometer. Moreover, AREf was induced through continuous exposure to sub-MIC of Ag+ and the antibacterial effect of TX-100 + Ag+ on AREf was further evaluated. The addition of 0.04% TX-100 showed maximal enhanced antibacterial effect of Ag+ against E. faecalis. The TEM and ICP-MS results demonstrated that TX-100 could facilitate Ag+ to enter E. faecalis through changing the membrane structure and integrity. Flow cytometry further showed the effect of TX-100 on membrane potential and permeability of E. faecalis. In addition, the enhanced antibacterial effect of TX-100 + Ag+ was also confirmed on induced AREf. TX-100 can facilitate Ag+ to enter E. faecalis through disrupting the membrane structure and changing the membrane potential and permeability, thus reducing the Ag+-resistance of E. faecalis and enhancing the antibacterial effect against either normal E. faecalis or induced AREf.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Enterococcus faecalis , Pruebas de Sensibilidad Microbiana , Octoxinol , Plata , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Octoxinol/farmacología , Antibacterianos/farmacología , Plata/farmacología , Membrana Celular/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Nitrato de Plata/farmacología
9.
Small ; : e2304850, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686680

RESUMEN

Silver has long been recognized for its potent antimicrobial properties, but achieving a slow and longer-term delivery of silver ions presents significant challenges. Previous efforts to control silver ion dosages have struggled to sustain release for extended periods in biomimetic environments, especially in the presence of complex proteins. This challenge is underscored by the absence of technology for sustaining antimicrobial activity, especially in the context of orthopedic implants where long-term efficacy, extending beyond 7 days, is essential. In this study, the tunable, slow, and longer-term release of silver ions from the two-dimensional (2D) nanocapillaries of graphene oxide (GO) laminates incorporated with silver ions (Ag-GO) for antimicrobial applications are successfully demonstrated. To closely mimic a physiologically relevant serum-based environment, a novel in vitro study model using 100% fetal bovine serum (FBS) is introduced as the test medium for microbiology, biocompatibility, and bioactivity studies. To emulate fluid circulation in a physiological environment, the in vitro studies are challenged with serum exchange protocols on different days. The findings show that the Ag-GO coating can sustainably release silver ions at a minimum dosage of 10 µg cm-2 day-1, providing an effective and sustained antimicrobial barrier for over ten days.

10.
Heliyon ; 10(6): e27583, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509917

RESUMEN

Silver nanoparticles (AgNPs) are known to affect the physiology and morphology of plants in various ways, but the exact mechanism by which they interact with plant cells remains to be elucidated. An unresolved question of silver nanotoxicology is whether the interaction is triggered by the physical features of the particles, or by silver ions leached from their surface. In this study, we germinated and grew Arabidopsis thaliana seedlings in synthetic medium supplemented with sub-morbid concentrations (4 µg/mL) of AgNPs and silver nitrate (AgNO3). This treatment led to in planta accumulation of 106 µg/g and 97 µg/g of silver in the AgNO3- and AgNP-exposed seedlings, respectively. Despite the statistically indistinguishable silver accumulation, RNA sequencing data demonstrated distinct changes in the transcriptome of the AgNP-exposed, but not in the AgNO3-exposed plants. AgNP exposure induced changes in the expression of genes involved in immune response, cell wall organization, photosynthesis and cellular defense against reactive oxygen species. AgNO3 exposure, on the other hand, caused the differential expression of only two genes, neither of which belonged to any AgNP-enriched gene ontology categories. Moreover, AgNP exposure led to a 39% reduction (p < 0.001) in total chlorophyll concentration relative to untreated plants which was associated with a 56.9% and 56.2% drop (p < 0.05) in carbon assimilation rate at ambient and saturating light, respectively. Stomatal conductance was not significantly affected by AgNP exposure, and limitations to carbon assimilation, as determined through analysis of light and carbon dioxide (A/Ci) curves, were attributed to rates of electron transport, maximum carboxylation rates and triose phosphate use. AgNO3-exposure, on the other hand, did not lead to significant reduction either in chlorophyll concentration or in carbon assimilation rate. Given these data, we propose that the impact of AgNPs cannot be simply attributed to the presence of the metal in plants, but is innate to the particulate nature of nanosilver.

11.
J Colloid Interface Sci ; 663: 761-774, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38437755

RESUMEN

As a noble metal with extremely high economic benefits, the recovery of silver ions has attracted a particular deal of attention. However, it is a challenge to recover silver ions efficiently and selectively from aqueous solutions. In this research, the novel metal-organic frameworks (MOFs) adsorbent (Zr-DPHT) is prepared for the highly efficient and selective recovery of silver ions from wastewater. Experimental findings reveal that Zr-DPHT's adsorption of Ag(I) constitutes an endothermic process, with an optimal pH of 5 and exhibits a maximum adsorption capacity of 268.3 mg·g-1. Isotherm studies show that the adsorption of Ag(I) by Zr-DPHT is mainly monolayer chemical adsorption. Kinetic studies indicate that the internal diffusion of Ag(I) in Zr-DPHT may be the rate-limiting step. The mechanism for Ag(I) adsorption on Zr-DPHT involves electrostatic interactions and chelation. In competitive adsorption, Ag(I) has the largest partition coefficient (9.64 mL·mg-1), indicating a strong interaction between Zr-DPHT and Ag(I). It is proven in the adsorption-desorption cycle experiments that Zr-DPHT has good regeneration performance. The research results indicate that Zr-DPHT can serve as a potential adsorbent for efficiently and selectively capturing Ag(I), providing a new direction for MOFs in the recycling field of precious metals.

12.
Environ Res ; 248: 118313, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280527

RESUMEN

The good antimicrobial properties of silver make it widely used in food, medicine, and environmental applications. However, the release and accumulation of silver-based antimicrobial agents in the environment is increasing with the extensive use of silver-based antimicrobials, and the prevalence of silver-resistant bacteria is increasing. To prevent the emergence of superbugs, it is necessary to exercise rational and strict control over drug use. The mechanism of bacterial resistance to silver has not been fully elucidated, and this article provides a review of the progress of research on the mechanism of bacterial resistance to silver. The results indicate that bacterial resistance to silver can occur through inducing silver particles aggregation and Ag+ reduction, inhibiting silver contact with and entry into cells, efflux of silver particles and Ag+ in cells, and activation of damage repair mechanisms. We propose that the bacterial mechanism of silver resistance involves a combination of interrelated systems. Finally, we discuss how this information can be used to develop the next generation of silver-based antimicrobials and antimicrobial therapies. And some antimicrobial strategies are proposed such as the "Trojan Horse" - camouflage, using efflux pump inhibitors to reduce silver efflux, working with "minesweeper", immobilization of silver particles.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Bacterias
13.
Anal Bioanal Chem ; 416(4): 873-882, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38062196

RESUMEN

This study presents a novel approach for the quantification of silver ions in environmental water through the utilization of liquid-liquid microextraction, employing natural deep eutectic solvents in conjunction with inductively coupled plasma emission spectroscopy. The extracted solvent was characterized by Fourier transform infrared spectroscopy (FT-IR). The impact of various extractant types, extractant molar ratio, extractant volume, extraction time, and salt concentration on the efficacy of silver ion extraction was investigated. The findings indicate that the optimal extraction efficiency was attained by utilizing a 5-mL aqueous solution volume, containing 1000 µL thymol/lactic acid NADES 1:3, a salt concentration of 1 mg mL-1, a pH value of 4, and a vortex time of 4 min. Upon implementing the optimized experimental conditions, the recovery of target metal ions was from 96.9 to 101.0%. The relative standard deviations were observed to be within the range of 1.5 to 2.7%. The present study demonstrates the reproducibility, accuracy, and reliability of the method for detecting silver ions in environmental water, with linear range of 5~1000 ng mL-1 and limits of detection (LOD) and limits of quantification (LOQ) of 1.52 ng mL-1 and 5.02 ng mL-1, respectively.

14.
Talanta ; 270: 125551, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103284

RESUMEN

DNA aptamer superparamagnetic photonic crystals (DSPCs), enriched with a highly selective cytosine-rich mismatched single-stranded DNA aptamer (CRDA), were successfully employed in a novel visual detection strategy for the detection of silver ions (Ag+). The technologies of superparamagnetic colloidal nanospheres (SCNs), DNA aptamer, and photonic crystals were combined to fabricate DPSCs. The aptamer was immobilized via electrostatic adsorption with amino groups that were chemically introduced on the surface of the SCNs, forming D-NH-SCNs. The detection is achieved by forming an Ag+ complex (C-Ag+-C) between Ag+ and D-NH-SCN. The DSPCs assembled under a magnetic field by D-NH-SCNs effectively detected Ag+ in the range of 1 µg/L to 5 mg/L, corresponding to the critical concentration range for heavy metals in drinking water. During the detection, the DSPC exhibited a wavelength blueshift from 652.8 nm to 626.4 nm (26.4 nm), as well as changes in reflection intensity. Notably, when detecting Ag+, a change in DSPC color from orange to yellow was observed. In summary, the developed visual detection material facilitates direct Ag + sensing. In the future, different DNA aptamers will be modified further to detect various targets in the fields of medicine, environmental monitoring, and food safety.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Plata/química , Aptámeros de Nucleótidos/química , Citosina/química , Iones , Nanopartículas Magnéticas de Óxido de Hierro
15.
J Fluoresc ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038876

RESUMEN

The chemosensors act as powerful tool in the detection of metal ions due to their simplicity, high sensitivity, low cost, low detection limit, rapid photophysical response, and application to the environmental and medical fields. This review article presents an overview for the chemosensing of Ag+ ions based on Calix, MOF, Nanoparticle, COF, Calix, Electrochemical chemosensor published from 2018 to 2023. Here, we have reviewed the sensing of Ag+ ions and summarised the binding response, mechanism, LOD, colorimetric response, adsorption capacity, technique used. The purpose of this review article to provide a detailed summary of the performance of different host chemosensors that are helpful for providing future direction to researchers on Ag+ ion detection and provides path to design effective chemsosensor (simple to synthesize, cost effective, high sensitivity, with more practical application). While studying the related article literature, we came across some challenges and that has been discussed lastly and provided solutions for them.

16.
Cureus ; 15(11): e49316, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38143665

RESUMEN

AIM: Silver nanoparticles (AgNPs) are considered to be a very significant and intriguing type within the category of metallic nanoparticles, particularly in the context of their involvement in biological applications. The objective of this research is to use the green synthesis method in order to synthesize AgNPs by using the leaf extract of C. rotundata. Furthermore, the study aims to evaluate the antioxidant and anti-inflammatory properties of these nanoparticles. MATERIALS AND METHODS: Fresh and healthy specimens of C. rotundata were gathered from Palk Bay, Tamil Nadu, India, and afterward subjected to a thorough washing process using tap water. The cleaned materials were air-dried and then fragmented into small bits and finely ground. The ethanolic extract of seagrass was then combined with a solution containing 1 millimolar (mM) silver nitrate (AgNo3). The decrease of silver ions in the solution was frequently measured using a UV-visible spectrophotometer. Synthesized AgNPs were investigated for antioxidants by DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and anti-inflammatory activity was measured by protein-denaturation assay. RESULTS: The use of C. rotundata leaf extract in the green synthesis of AgNPs, in the presence of 1 mM AgNO3, led to a noticeable alteration in the colour of the mixture, transitioning from a pale hue to a brown shade. This change in colour serves as evidence of the reduction of AgNo3 ions to silver ions, thereby facilitating the creation of AgNPs. The duration of the bio-reduction process of silver ions in the reaction mixture was observed to be two hours. The antioxidant and anti-inflammatory activity showed promising activity for AgNPs. CONCLUSION: This study concluded that C. rotundata had antioxidant capabilities, and AgNPs derived from C. rotundata have potential use in pharmaceuticals and medication administration.

17.
Int Microbiol ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971657

RESUMEN

The increase in simultaneous exposure to magnetic fields and other hazardous compounds released from industrial applications poses multiple stress conditions on the ecosystems and public human health. In this work, we investigated the effects of co-exposure to a static magnetic field (SMF) and silver ions (AgNO3) on biochemical parameters and antioxidant enzyme activities in the yeast Saccharomyces cerevisiae. Sub-chronic exposure to AgNO3 (0.5 mM) for 9 h resulted in a significant decrease in antioxidant enzyme activity, including glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and glutathione transferase (GST). The total glutathione (GSH) level increased in yeast cells exposed to Ag. Additionally, a notable elevation in malondialdehyde (MDA) levels and protein carbonyl content was observed in both the AgNP and AgNO3 groups compared to the control group. Interestingly, the SMF alleviated the oxidative stress induced by silver nitrate, normalizing antioxidant enzyme activities by reducing cellular ROS formation, MDA levels, and protein carbonylation (PCO) concentrations.

18.
Polymers (Basel) ; 15(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38006083

RESUMEN

Addressing the growing need for environmentally friendly fungicides in agriculture, this study explored the potential of biopolymer microparticles loaded with metal ions as a novel approach to combat fungal pathogens. Novel alginate microspheres and chitosan/alginate microcapsules loaded with zinc or with zinc and silver ions were prepared and characterized (microparticle size, morphology, topography, encapsulation efficiency, loading capacity, and swelling behavior). Investigation of molecular interactions in microparticles using FTIR-ATR spectroscopy exhibited complex interactions between all constituents. Fitting to the simple Korsmeyer-Peppas empirical model revealed the rate-controlling mechanism of metal ions release from microparticles is Fickian diffusion. Lower values of the release constant k imply a slower release rate of Zn2+ or Ag+ ions from microcapsules compared to that of microspheres. The antimicrobial potential of the new formulations against the fungus Botrytis cinerea was evaluated. When subjected to tests against the fungus, microspheres exhibited superior antifungal activity especially those loaded with both zinc and silver ions, reducing fungal growth up to 98.9% and altering the hyphal structures. Due to the slower release of metal ions, the microcapsule formulations seem suitable for plant protection throughout the growing season. The results showed the potential of these novel microparticles as powerful fungicides in agriculture.

19.
Anal Chim Acta ; 1278: 341752, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709478

RESUMEN

BACKGROUND: Lentinan medicament from Lentinus edodes has been considered as natural medicinal products with minimal side effects for cancer therapy, but Lentinus edodes are easily polluted by nonbiodegradable heavy metals, especially silver ion (Ag+). Therefore, it is highly desirable to monitor Ag + pollution in Lentinus edodes considering their adverse impact on lentinan medicament. Electrochemical sensor isn't affected from the interference of matrix turbidity and color, and offers a powerful means for determination of variant analytes. As for electrochemical sensing toward Ag+, there is a great need to design efficient signal probes for specific recognition and signal generation. RESULTS: We present an appropriate electrochemical aptasensor for Ag + assay based on biomimetic catalysis of porphyrin-encapsulated MOF (PorMOF) and allosteric switch of C-rich DNA. Thanks to the excellent biocompatibility, PorMOFs as nanozyme are used to design signal probes by loading duplex-like DNA scaffold. Owing to the specific recognition of Ag+ toward cytosine (C) base-rich DNA, PorMOF at the distal end was close to the underlying electrode via C-Ag+-C formation, leading to an enhanced current of catalytic hydroxylamine oxidation for signal generation. Using the positive correlation between current response and Ag+ level, the electrochemical system provides a promising means for on-line monitoring of Ag+ in Lentinus edodes with recoveries from 92.8% to 106.4% and relative standard deviation from 3.98% to 8.24%, verifying the applicability of the electrochemical aptasensor toward Ag+ in Lentinus edodes. SIGNIFICANCE AND NOVELTY: With merits of portability, simple operation, and rapid response, the electrochemical pattern offers a useful solution for on-line monitoring of Ag+ in Lentinus edodes. By altering the DNA sequence, the proposed aptasensor provides a powerful way for monitoring other heavy metals, capable of protecting medicament production from heavy metal pollution.


Asunto(s)
Productos Biológicos , Estructuras Metalorgánicas , Metales Pesados , Hongos Shiitake , Lentinano , Plata
20.
Cureus ; 15(7): e42401, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37621826

RESUMEN

Background Silver possesses cytotoxic properties against many microorganisms and is regularly used in wound care. Current evidence supporting the use of one type of silver-containing wound dressing (SCWD) is insufficient. Materials and methods To examine the ability of selected SCWDs to inhibit the growth of two strains of bacteria (Escherichia coli and Staphylococcus aureus) commonly found in wounds, an in vitro wound model was used. Bacteria were applied to the surface of nutrient agar, and a piece of each SCWD was applied to the bacteria. The plates were incubated at 37°C overnight. The zone of inhibition (ZI) around each SCWD was measured in cm2. Results The mean ZI for Acticoat Flex-3 on E. coli was 1.59 ± 0.15 cm2, which was significantly greater than that observed for Aquacel Ag (p<0.001), Mepilex Ag (p<0.0001), Mepitel Ag (p<0.001), Optifoam (p<0.0001), and Tegaderm Alginate Ag (p<0.01), but statistically indistinguishable from Maxorb II Ag. The mean ZI on S. aureus was 1.21 ± 0.16 cm2, which was greater than Aquacel Ag (p<0.05), Mepilex (p<0.0001), Optifoam (p<0.0001), and Tegaderm Alginate Ag (p<0.05), but statistically indistinguishable from Maxorb II Ag or Mepitel Ag. Conclusion Of the SCWDs tested, Acticoat Flex-3 demonstrated the most robust antimicrobial effect. Herein, we show that Acticoat Flex-3 may provide the most wound protection against bacterial infection. In conclusion, these data provide clinicians with additional independent evidence to inform their clinical practice on the use of specific wound dressings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA