Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1006072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388477

RESUMEN

The frustule of diatoms has an exceptional structure composed of inorganic and organic molecules. In the organic fraction, protein families were identified whose members are expected to have a complex cellular targeting to their final location within the frustule. Here we investigated for frustule-targeting signals two representatives of the cingulin family, the proteins CinY2 and CinW2; beside an already known, classical signal peptide, we have identified further regions involved in cellular targeting. By using these regions as a search criteria we were able to identify two new frustule proteins. In addition, we showed that the temporal regulation of the gene expression determines the final location of one cingulin. Our results therefore point to a sophisticated cellular and extracellular targeting of frustule components to build the fascinating frustule structure of a diatom.

2.
Plant J ; 110(6): 1700-1716, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403318

RESUMEN

Morphogenesis of the intricate patterns of diatom silica cell walls is a protein-guided process, yet to date only very few such silica biomineralization proteins have been identified. Therefore, it is currently unknown whether all diatoms share conserved proteins of a basal silica forming machinery, and whether unique proteins are responsible for the morphogenesis of species-specific silica patterns. To answer these questions, we extracted proteins from the silica of three diatom species (Thalassiosira pseudonana, Thalassiosira oceanica, and Cyclotella cryptica) by complete demineralization of the cell walls. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis of the extracts identified 92 proteins that we name 'soluble silicome proteins' (SSPs). Surprisingly, no SSPs are common to all three species, and most SSPs showed very low similarity to one another in sequence alignments. In-depth bioinformatics analyses revealed that SSPs could be grouped into distinct classes based on short unconventional sequence motifs whose functions are yet unknown. The results from the in vivo localization of selected SSPs indicates that proteins, which lack sequence homology but share unconventional sequence motifs may exert similar functions in the morphogenesis of the diatom silica cell wall.


Asunto(s)
Diatomeas , Biomineralización , Cromatografía Liquida , Diatomeas/metabolismo , Proteoma/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Espectrometría de Masas en Tándem
3.
Acta Biomater ; 120: 38-56, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32447061

RESUMEN

The rational design and controllable synthesis of functional silica-based materials have gained increased interest in a variety of biomedical and biotechnological applications due to their unique properties. The current review shows that marine organisms, such as siliceous sponges and diatoms, could be the inspiration for the fabrication of advanced biohybrid materials. Several biomolecules were involved in the molecular mechanism of biosilicification in vivo. Mimicking their behavior, functional silica-based biomaterials have been generated via biomimetic and bioinspired silicification in vitro. Additionally, several advanced technologies were developed for in vitro and in vivo immobilization of biomolecules with potential applications in biocatalysis, biosensors, bioimaging, and immunoassays. A thin silica layer could coat a single living cell or virus as a protective shell offering new opportunities in biotechnology and nanomedicine fields. Promising nanotechnologies have been developed for drug encapsulation and delivery in a targeted and controlled manner, in particular for poorly soluble hydrophobic drugs. Moreover, biomimetic silica, as a morphogenetically active biocompatible material, has been utilized in the field of bone regeneration and in the development of biomedical implantable devices. STATEMENT OF SIGNIFICANCE: In nature, silica-based biomaterials, such as diatom frustules and sponge spicules, with high mechanical and physical properties were created under biocompatible conditions. The fundamental knowledge underlying the molecular mechanisms of biosilica formation could inspire engineers and chemists to design novel hybrid biomaterials using molecular biomimetic strategies. The production of such biohybrid materials brings the biosilicification field closer to practical applications. This review starts with the biosilicification process of sponges and diatoms with recently updated researches. Then, this article covers recent advances in the design of silica-based biomaterials and their potential applications in the fields of biotechnology and nanomedicine, highlighting several promising technologies for encapsulation of functional proteins and living cells, drug delivery and the preparation of scaffolds for bone regeneration.


Asunto(s)
Materiales Biomiméticos , Diatomeas , Materiales Biocompatibles , Biomimética , Nanomedicina , Dióxido de Silicio
4.
Mar Drugs ; 13(8): 5297-333, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26295401

RESUMEN

Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed.


Asunto(s)
Materiales Biomiméticos/química , Péptidos/química , Dióxido de Silicio/química , Animales , Materiales Biomiméticos/farmacología , Biomimética/métodos , Biotecnología/métodos , Diatomeas/química , Nanotecnología/métodos , Péptidos/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA