Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Transl Res ; 14(11): 8166-8174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505315

RESUMEN

OBJECTIVE: To identify the most relevant genes of cardiovascular disease in acute myocardial infarction patients using weighted gene co-expression network analysis (WGCNA). METHODS: The microarray dataset of GSE66360 was downloaded from the Gene Expression Omnibus (GEO) website. The differential genes with adjusted P < 0.05 and |log2 fold change (FC)| > 0.5 were included in the analysis. The weighed gene co-expression network analysis (WGCNA) was used to build a gene co-expression network and identify the most significant module. Cytoscape was used to filter the hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the hub genes. The key genes were defined as having high statistical and biological significance. RESULTS: A total of 4751 differentially expressed genes (DEGs) were screened from the dataset. The purple module had the highest significance in AMI. There were 47 hub genes identified from the module. The GO terms "amyloid beta protein metabolism" and "carbohydrate metabolism" and the KEGG terms "phagosome-related pathways" and "Staphylococcus aureus-associated pathways" were the pathways strongly enriched in AMI. Fatty acid translocase cluster of differentiation (CD36), formyl peptide receptor type 2 (FPR2), integrin subunit alpha M (ITGAM), and oxidized low density lipoprotein receptor 1 (OLR1) were considered key genes in AMI. CONCLUSION: Our research suggested that the underlying mechanism was related to inflammation and lipid formation. The hub genes identified were CD36, FPR2, ITGAM, and OLR1.

2.
J Transl Med ; 20(1): 361, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962388

RESUMEN

BACKGROUND: The immune system plays a vital role in the pathological process of ischaemic stroke. However, the exact immune-related mechanism remains unclear. The current research aimed to identify immune-related key genes associated with ischaemic stroke. METHODS: CIBERSORT was utilized to reveal the immune cell infiltration pattern in ischaemic stroke patients. Meanwhile, a weighted gene coexpression network analysis (WGCNA) was utilized to identify meaningful modules significantly correlated with ischaemic stroke. The characteristic genes correlated with ischaemic stroke were identified by the following two machine learning methods: the support vector machine-recursive feature elimination (SVM-RFE) algorithm and least absolute shrinkage and selection operator (LASSO) logistic regression. RESULTS: The CIBERSORT results suggested that there was a decreased infiltration of naive CD4 T cells, CD8 T cells, resting mast cells and eosinophils and an increased infiltration of neutrophils, M0 macrophages and activated memory CD4 T cells in ischaemic stroke patients. Then, three significant modules (pink, brown and cyan) were identified to be significantly associated with ischaemic stroke. The gene enrichment analysis indicated that 519 genes in the above three modules were mainly involved in several inflammatory or immune-related signalling pathways and biological processes. Eight hub genes (ADM, ANXA3, CARD6, CPQ, SLC22A4, UBE2S, VIM and ZFP36) were revealed to be significantly correlated with ischaemic stroke by the LASSO logistic regression and SVM-RFE algorithm. The external validation combined with a RT‒qPCR analysis revealed that the expression levels of ADM, ANXA3, SLC22A4 and VIM were significantly increased in ischaemic stroke patients and that these key genes were positively associated with neutrophils and M0 macrophages and negatively correlated with CD8 T cells. The mean AUC value of ADM, ANXA3, SLC22A4 and VIM was 0.80, 0.87, 0.91 and 0.88 in the training set, 0.85, 0.77, 0.86 and 0.72 in the testing set and 0.87, 0.83, 0.88 and 0.91 in the validation samples, respectively. CONCLUSIONS: These results suggest that the ADM, ANXA3, SLC22A4 and VIM genes are reliable serum markers for the diagnosis of ischaemic stroke and that immune cell infiltration plays a crucial role in the occurrence and development of ischaemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Isquemia Encefálica/complicaciones , Isquemia Encefálica/genética , Redes Reguladoras de Genes , Humanos , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular/genética , Máquina de Vectores de Soporte , Enzimas Ubiquitina-Conjugadoras
3.
J Transl Med ; 20(1): 321, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864510

RESUMEN

BACKGROUND: The immune system plays a vital role in the pathophysiology of acute myocardial infarction (AMI). However, the exact immune related mechanism is still unclear. This research study aimed to identify key immune-related genes involved in AMI. METHODS: CIBERSORT, a deconvolution algorithm, was used to determine the proportions of 22 subsets of immune cells in blood samples. The weighted gene co-expression network analysis (WGCNA) was used to identify key modules that are significantly associated with AMI. Then, CIBERSORT combined with WGCNA were used to identify key immune-modules. The protein-protein interaction (PPI) network was constructed and Molecular Complex Detection (MCODE) combined with cytoHubba plugins were used to identify key immune-related genes that may play an important role in the occurrence and progression of AMI. RESULTS: The CIBERSORT results suggested that there was a decrease in the infiltration of CD8 + T cells, gamma delta (γδ) T cells, and resting mast cells, along with an increase in the infiltration of neutrophils and M0 macrophages in AMI patients. Then, two modules (midnightblue and lightyellow) that were significantly correlated with AMI were identified, and the salmon module was found to be significantly associated with memory B cells. Gene enrichment analysis indicated that the 1,171 genes included in the salmon module are mainly involved in immune-related biological processes. MCODE analysis was used to identify four different MCODE complexes in the salmon module, while four hub genes (EEF1B2, RAC2, SPI1, and ITGAM) were found to be significantly correlated with AMI. The correlation analysis between the key genes and infiltrating immune cells showed that SPI1 and ITGAM were positively associated with neutrophils and M0 macrophages, while they were negatively associated with CD8 + T cells, γδ T cells, regulatory T cells (Tregs), and resting mast cells. The RT-qPCR validation results found that the expression of the ITGAM and SPI1 genes were significantly elevated in the AMI samples compared with the samples from healthy individuals, and the ROC curve analysis showed that ITGAM and SPI1 had a high diagnostic efficiency for the recognition of AMI. CONCLUSIONS: Immune cell infiltration plays a crucial role in the occurrence and development of AMI. ITGAM and SPI1 are key immune-related genes that are potential novel targets for the prevention and treatment of AMI.


Asunto(s)
Perfilación de la Expresión Génica , Infarto del Miocardio , Linfocitos T CD8-positivos/metabolismo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , Macrófagos/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Mapas de Interacción de Proteínas
4.
Aging (Albany NY) ; 14(9): 4085-4106, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35537778

RESUMEN

Despite the well-established role of long non-coding RNAs (lncRNAs) across various biological processes, their mechanisms in acute myocardial infarction (AMI) are not fully elucidated. The GSE34198 dataset from the Gene Expression Omnibus (GEO) database, which comprised 49 specimens from individuals with AMI and 47 specimens from controls, was extracted and analysed using the weighted gene co-expression network analysis (WGCNA) package. Twenty-seven key genes were identified through a combination of the degree and gene significance (GS) values, and the CDC42 (degree = 64), JAK2 (degree = 41), and CHUK (degree = 30) genes were identified as having the top three-degree values among the 27 genes. Potential interactions between lncRNA, miRNAs and mRNAs were predicted using the starBase V3.0 database, and a lncRNA-miRNA-mRNA triple network containing the lncRNA XIST, twenty-one miRNAs and three hub genes (CDC42, JAK2 and CHUK) was identified. RT-qPCR validation showed that the expression of the JAK2 and CDC42 genes and the lncRNA XIST was noticeably increased in samples from patients with AMI compared to normal samples. Pearson's correlation analysis also proved that JAK2 and CDC42 expression levels correlated positively with lncRNA XIST expression levels. The area under ROC curve (AUC) of lncRNA XIST was 0.886, and the diagnostic efficacy of the lncRNA XIST was significantly better than that of JAK2 and CDC42. The results suggested that the lncRNA XIST appears to be a risk factor for AMI likely through its ability to regulate JAK2 and CDC42 gene expressions, and it is expected to be a novel and reliable biomarker for the diagnosis of AMI.


Asunto(s)
MicroARNs , Infarto del Miocardio , ARN Largo no Codificante , Biomarcadores , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Nutr Metab (Lond) ; 18(1): 24, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663541

RESUMEN

BACKGROUND: The purpose of this study was to explore the potential molecular targets of hyperlipidaemia and the related molecular mechanisms. METHODS: The microarray dataset of GSE66676 obtained from patients with hyperlipidaemia was downloaded. Weighted gene co-expression network (WGCNA) analysis was used to analyse the gene expression profile, and the royal blue module was considered to have the highest correlation. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were implemented for the identification of genes in the royal blue module using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (version 6.8; http://david.abcc.ncifcrf.gov ). A protein-protein interaction (PPI) network was established by using the online STRING tool. Then, several hub genes were identified by the MCODE and cytoHubba plug-ins in Cytoscape software. RESULTS: The significant module (royal blue) identified was associated with TC, TG and non-HDL-C. GO and KEGG enrichment analyses revealed that the genes in the royal blue module were associated with carbon metabolism, steroid biosynthesis, fatty acid metabolism and biosynthesis pathways of unsaturated fatty acids. SQLE (degree = 17) was revealed as a key molecule associated with hypercholesterolaemia (HCH), and SCD was revealed as a key molecule associated with hypertriglyceridaemia (HTG). RT-qPCR analysis also confirmed the above results based on our HCH/HTG samples. CONCLUSIONS: SQLE and SCD are related to hyperlipidaemia, and SQLE/SCD may be new targets for cholesterol-lowering or triglyceride-lowering therapy, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA