Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.711
Filtrar
1.
Nat Prod Res ; : 1-7, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222481

RESUMEN

Excessive alcohol consumption is leading to increased rates of liver injury and disease. A new research strategy focuses on manipulating gut microbiota to lessen alcohol-induced harm. This study examined the hepatoprotective effects of extracts from Acanthus ilicifolius (EAI) on acute alcoholic liver injury by inhibiting the TLR4/NF-κB signalling pathway and modulating intestinal microbiota in mice. The results showed that EAI dose-dependently reduced alcohol-induced elevations of AST, ALT, and ALP levels. EAI showed significant inhibitory effects on the expressions of TLR4, NF-κB, and pNF-κB proteins. Furthermore, EAI caused a notable reduction in hepatic levels of IL-1ß, IL-6, and TNF-α. Supplementation with EAI could ameliorate alcohol-induced dysbiosis of intestinal bacteria. The levels of ALT, AST, and ALP levels were negatively correlated with Ligilactobacillus, Lactobacillus, and Alistipes, but positively correlated with Helicobacter and Bacteroides. Overall, EAI alleviated alcoholic liver injury in mice by inhibiting the TLR4/NF-κB signalling pathway and modulating intestinal bacteria.

2.
Cell Signal ; : 111411, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277091

RESUMEN

Protein kinases, mediating their biological function via their catalytic activity, play important role in cell development, including cell proliferation, migration, angiogenesis and survival. Over the years, protein kinase inhibitors have been developed as an important class of anticancer agents clinically. However, the off-targeting and drug resistance of protein kinase inhibitors limit their efficiency. Anticancer peptides derived from marine organisms represent a novel class of bioactive substances, and some of the peptides exhibit anticancer effect via inhibiting protein kinases. In this mini review, the recent progress of anticancer peptides targeting protein kinases from marine sources are presented. Marine peptides inhibiting resistant cancer cells by targeting novel domains of protein kinases are highlighted. The challenges and prospects of developing marine peptides as anticancer agents are also discussed.

3.
Front Med (Lausanne) ; 11: 1448248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286645

RESUMEN

Introduction: Corneal endothelial transplantation accounts for most of corneal transplantation for treating corneal diseases, however severe shortage of corneal donors is the biggest obstacle. In our previous study, we differentiated human skin-derived precursors (SKPs) into corneal endothelial cell (CEC)-like cells with a co-culture system. In this study, we aimed to investigate cell differentiation molecular mechanism and evaluate the function of CEC-like cells by developing tissue-engineered corneas in order to improve cell production efficiency and provide basic research for clinical transformation. Methods: We performed transcriptome sequencing of SKPs and CEC-like cells. Further, we focused on the possible enriching pathways, including PI3K/Akt, MAPK/Erk, WNT/ß-catenin, and important transcription factors Pitx2 and Foxc1. The PI3K and ß-catenin inhibitors were also added to the culture system to observe the differentiation alteration. We developed a graft for a tissue-engineered cornea (TEC) using CEC-like cells and acellular porcine cornea matrix scaffold. The tissue-engineered corneas were transplanted into rabbits via penetrating keratoplasty. Results: The PI3K/Akt, MAPK/Erk, and WNT/ß-catenin pathways play important roles during the differentiation of SKPs into CEC-like cells. Crosstalk existed between the PI3K/Akt and MAPK/Erk pathways. The PI3K/Akt and WNT/ß-catenin pathways were connected. Pitx2 and Foxc1 were subject to temporal and spatial controls of the WNT/ß-catenin pathway. The inhibition of the PI3K/Akt and WNT/ß-catenin pathways both prevented cell differentiation. CEC-like cells grew well on the acellular porcine cornea matrix scaffold, and the tissue-engineered corneal graft performed well after transplantation into rabbits. Conclusion: We provide experimental basis for CEC-like cell industrial production and drive the cells to be clinically applied in cellular replacement therapy or alternative graft substitution for treating corneal diseases in the future.

4.
Fish Shellfish Immunol ; 154: 109897, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260530

RESUMEN

Chlamys farreri, a commercially important bivalve mollusk, is extensively cultivated in China. In recent years, the frequent occurrence of diseases has led to significant mortality in scallop farms. Despite this, our understanding of scallop's innate immune mechanisms remains limited. The NF-κB signaling pathway plays a crucial role in various biological processes, including cellular, developmental, and immune defense mechanisms. Inhibitors of NF-κB (IκB) proteins block the nuclear localization and DNA binding of NF-κB, thereby inhibiting its activity. However, the role of these proteins in invertebrates is not well understood. In this study, we identified a new homolog of the IκB gene in C. farreri, named CfIκB1. The open reading frame of CfIκB1 spans 1089 bp, encoding 362 amino acids. Through sequence comparison and phylogenetic analysis, CfIκB1 was classified as a member of the invertebrate IκB family. Quantitative real-time PCR revealed that CfIκB1 transcripts are present in all examined tissues, with the highest expression observed in hemocytes. Expression levels were significantly upregulated following exposure to lipopolysaccharide, peptidoglycan, and polyinosinic:polycytidylic acid. Co-immunoprecipitation studies confirmed that CfIκB1 interacts with NF-κB family proteins CfRel-1 and CfRel. Dual-luciferase reporter assays demonstrated that CfIκB1 inhibits CfRel-dependent activation of NF-κB, ISRE, IFNß, and AP-1. These findings suggest that CfIκB1 plays a crucial role in regulating NF-κB activity, which is integral to the innate immunity of C. farreri. This research enhances our understanding of the innate immune system in invertebrates and provides a theoretical basis for developing disease-resistant scallops at the molecular level.

5.
Virulence ; 15(1): 2404256, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39267283

RESUMEN

Candida albicans is an opportunistic fungal pathogen that can cause systemic infections in immunocompromised individuals. Morphological transition and biofilm formation are major virulence factors of C. albicans. Moreover, biofilm enhances resistance to antifungal agents. Therefore, it is urgent to identify new and effective compounds to target the biofilm of C. albicans. In the present study, the antifungal activities of equol against C. albicans were investigated. In vitro, the microdilution analysis and spot assay result showed that equol exhibited potent inhibitory activities against C. albicans. Further investigations confirmed that the antifungal effects of equol involved interference with the transition from yeast to hypha and biofilm formation of C. albicans. In addition, transcriptome sequencing and reverse transcription-quantitative PCR (qRT-PCR) analysis showed that equol significantly downregulated the expression of several genes in the Ras1-cAMP-PKA pathway related to hyphae and biofilm formation and significantly upregulated the expression of the negative transcriptional repressors RFG1 and TUP1. Moreover, equol effectively reduced the production of cAMP, a key messenger in the Ras1-cAMP-PKA pathway, while supplementation with cAMP partly rescued the equol-induced defects in hyphal development. Furthermore, in a mouse model of systemic candidiasis (SC), equol treatment significantly decreased the fungal burden (liver, kidneys, and lung) in mice and local tissue damage, while enhancing the production of interleukin-10 (IL-10). Together, these findings confirm that equol is a potentially effective agent for treatment of SC.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Candidiasis , Equol , Candida albicans/efectos de los fármacos , Candida albicans/genética , Animales , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Ratones , Candidiasis/microbiología , Candidiasis/tratamiento farmacológico , Equol/farmacología , Femenino , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
6.
ACS Biomater Sci Eng ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283699

RESUMEN

Without intervention, the natural wound healing process can often result in scarring, which can have detrimental effects on both the physical and mental well-being of patients. Therefore, it is crucial to develop biomaterials that can promote healing without scarring. Regulating the Yes-associated protein-1/PDZ-binding motif (YAP/TAZ) signaling pathway is possible to reduce excessive fibrosis of fibroblasts and proliferation of vascular endothelial cells, ultimately impacting scar formation. Arsenic trioxide (ATO), an ancient drug with medicinal and toxic properties, has shown promise in regulating this pathway. An ATO-loaded hydrogel dressing (ATO@CS/SA) was created to facilitate scarless wound healing, utilizing chitosan (CS) and sodium alginate (SA) to prevent direct contact of ATO with the wound tissue and minimize potential side effects. In vitro studies demonstrated that low concentrations of ATO did not impact cell viability and even promoted proliferation and migration. Co-culturing the hydrogel with fibroblasts and vascular endothelial cells led to decreased expression levels of YAP and TAZ. Animal studies over a 90-day period revealed significant inhibition of scar formation with this system. Histological experiments further confirmed that the decreased expression of YAP and TAZ was responsible for this outcome. In conclusion, when administered at the appropriate dose, ATO can be repurposed from a traditional poison to a therapeutic agent, effectively suppressing excessive cell fibrosis and blood vessel proliferation and offering a novel approach to scar-free treatment.

7.
Front Pharmacol ; 15: 1450211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263574

RESUMEN

Pyroptosis induced by oxidative stress is a significant contributor to mental health disorders, including depression (+)-Catechin (CA), a polyphenolic compound prevalent in various food sources, has been substantiated by prior research to exhibit potent antioxidant properties and potential antidepressant effects. Nonetheless, the precise antidepressive mechanisms and effects of CA remain incompletely elucidated. In this study, we employed corticosterone (CORT) and PC12 cells to develop a cellular model of depression, aiming to investigate the protective effects of CA against CORT-induced cellular damage. Our objective was to elucidate the underlying mechanisms of protective action. We utilized transcriptomic analysis to identify differentially expressed genes and employed bioinformatics approaches to predict the potential mechanisms of CA's protective effects in PC12 cells. These transcriptomic predictions were subsequently validated through western blot analysis. The findings indicated that CA possesses the capacity to mitigate oxidative stress and suppress pyroptosis in PC12 cells via the activation of the PI3K/AKT signaling pathway. This activation subsequently modulates the Nrf2/HO1/NF-κB pathways, thereby providing protection to PC12 cells against damage induced by CORT. Furthermore, we investigated the interaction between CA and the Keap1 protein employing molecular docking and protein thermal shift assays. We propose that CA can activate Nrf2 through two mechanisms to decrease reactive oxygen species (ROS) levels and inhibit pyroptosis: one mechanism involves the activation of the PI3K/AKT signaling pathway, and the other involves direct binding to Keap1, leading to an increase in p-Nrf2.

8.
Heliyon ; 10(17): e37038, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296021

RESUMEN

Background and aim: Yueju Pill (YJ) not only has good antidepressant effect but also can effectively treat digestive system diseases. However,it remains unclear whether the mechanism of antidepressant action of YJ is related to the peripheral digestive system. The purpose of this study was to elucidate the antidepressant mechanism of YJ on ghrelin level based on gastric mTOR/S6K signal pathway and sensitized hippocampal Ghrelin/GHS-R system in CUMS mice. Experimental procedure: The depression model was induced by chronic unpredictable mild stress (CUMS) and social isolation. The antidepressant effect of YJ was observed by behavioral experiment and hemodynamic experiments. Ghrelin levels in in hippocampus and blood were measured by Elisa kit, and the mRNA of ghrelin in mice stomach was measured by Real-time Quantitative PCR (RT-qPCR). The activation level of gastric mTOR/S6K signal pathway was detected by Western Blot (WB). Rapamycin (Rapa) and L-Leucine (L-Leu) were used to verify the effects of YJ on the synthesis and release of ghrelin. The activity of GHS-R in hippocampus was observed by immunofluorescence. Hippocampal neuronal damage was evaluated by HE staining and Nissl staining. The level of central neurotransmitter was measured by liquid chromatograph mass spectrometer (LC-MS). Results and conclusion: YJ ameliorates CUMS-induced depressive-like behavior by inhibiting the gastric mTOR/S6K signaling pathway and increasing GHR expression in the mouse stomach. However, these effects of YJ could be resisted by L-Leu (a mTOR receptor agonist). Further studies have shown that YJ can sensitize the Ghrelin/GHS-R system in the hippocampus, with significant neuroprotective effects, and is also involved in regulating the levels of key neurotransmitters (5-hydroxytryptamine, Dopamine and γ-aminobutyric acid) in depressive-like states.

9.
J Hazard Mater ; 479: 135733, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236541

RESUMEN

Minimizing the detrimental impacts of perfluorooctanoic acid (PFOA) on human health is a daunting task. Here, we aimed to propose effective strategies for reducing PFOA-induced mitochondrial toxicity in human liver and intestinal cells. PFOA could occupy the fatty acid-binding pockets of human peroxisome proliferator-activated receptor alpha (hPPARα). PFOA not only could structurally interact with hPPARα, but also substantially upregulated the expression levels of PPARα and its downstream gene (i.e., pyruvate dehydrogenase kinase (PDK4)). The increased expression of PDK4 was associated with the mitochondrial toxicity of PFOA, and inhibition of PDK4 or knock-down of PDK4 could effectively attenuate the mitochondrial toxicity of PFOA. Moreover, modification of carboxyl group via an esterification of PFOA into methyl perfluorooctanoate (MePFOA) decreased the affinity to hPPARα, resulting in the loss of upregulated expressions of PPARα and PDK4. Lower mitochondrial toxicity and cytotoxicity were found in the MePFOA-treated cells compared to PFOA exposure. Our study supported that the carboxyl group of PFOA (as functional head group) was required for inducing its mitochondrial toxicity. Two strategies, including modification of functional head group and inhibition of toxic target of PFOA, are feasible to ameliorate mitochondrial toxicity of PFOA.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39171465

RESUMEN

BACKGROUND: Angelica sinensis (Oliv.) Diels, a renowned traditional Chinese medicine, has gained widespread recognition for its antitumor properties. Further investigation is warranted to determine whether ligustilide (LIG), which is extracted from this plant, can effectively inhibit tumors. OBJECTIVE: We delved into the impact of LIG on cholangiocarcinoma cells, aiming to unravel the mechanisms underlying its effects. MATERIALS AND METHODS: Cholangiocarcinoma cells (HuccT1 and RBE) were exposed to varying concentrations of LIG (2, 5, 10, 15, 20 µg/mL) for 24, 48, and 72 h. After identifying differentially expressed genes, stable transcription strains were utilized to explore LIG's antitumor mechanism. The inhibitory effects of LIG (5 µg/mL, 48 h) were assessed by CCK-8, colony formation, wound healing, transwell migration, western blotting, and immunofluorescence. In vivo, experiments in NOG mice (Ac, Ac+LIG; five per group) evaluated LIG's antiproliferative efficacy (5 mg/kg, intraperitoneal injection, 18-day period). RESULTS: LIG significantly inhibited cell proliferation and migration with IC50 5.08 and 5.77 µg/mL in HuccT1 and RBE cell lines at 48h, increased the expression of E-cadherin while decreased N-cadherin and the protein of PI3K/AKT pathway. Silenced NDRG1 (N-Myc downstream- regulated gene 1) attenuated these effects. In vivo, the AC+LIG group (LIG, 5 mg/kg, qd, 18 d) exhibited smaller tumor volumes compared to the Ac group. The expression of Ki-67 was significantly downregulated in the AC+LIG group. CONCLUSION: For the first time, our study has revealed that LIG holds therapeutic potential for treating cholangiocarcinoma. These findings hold promise for advancing innovative therapeutic approaches in the treatment of cholangiocarcinoma. LIG may serve as a useful patent for treating CCA.

11.
J Transl Med ; 22(1): 717, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095789

RESUMEN

BACKGROUND: The global prevalence of autoimmune hepatitis (AIH) is increasing due in part to the lack of effective pharmacotherapies. Growing evidence suggests that fibroblast growth factor 4 (FGF4) is crucial for diverse aspects of liver pathophysiology. However, its role in AIH remains unknown. Therefore, we investigated whether FGF4 can regulate M1 macrophage and thereby help treat liver inflammation in AIH. METHODS: We obtained transcriptome-sequencing and clinical data for patients with AIH. Mice were injected with concanavalin A to induce experimental autoimmune hepatitis (EAH). The mechanism of action of FGF4 was examined using macrophage cell lines and bone marrow-derived macrophages. RESULTS: We observed higher expression of markers associated with M1 and M2 macrophages in patients with AIH than that in individuals without AIH. EAH mice showed greater M1-macrophage polarization than control mice. The expression of M1-macrophage markers correlated positively with FGF4 expression. The loss of hepatic Fgf4 aggravated hepatic inflammation by increasing the abundance of M1 macrophages. In contrast, the pharmacological administration of FGF4 mitigated hepatic inflammation by reducing M1-macrophage levels. The efficacy of FGF4 treatment was compromised following the in vivo clearance of macrophage populations. Mechanistically, FGF4 treatment activated the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-signal pathway in macrophages, which led to reduced M1 macrophages and hepatic inflammation. CONCLUSION: We identified FGF4 as a novel M1/M2 macrophage-phenotype regulator that acts through the PI3K-AKT-signaling pathway, suggesting that FGF4 may represent a novel target for treating inflammation in patients with AIH.


Asunto(s)
Polaridad Celular , Factor 4 de Crecimiento de Fibroblastos , Hepatitis Autoinmune , Inflamación , Macrófagos , Ratones Endogámicos C57BL , Animales , Femenino , Humanos , Masculino , Ratones , Polaridad Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Hepatitis Autoinmune/patología , Hepatitis Autoinmune/metabolismo , Inflamación/patología , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
12.
World J Gastroenterol ; 30(30): 3584-3608, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193572

RESUMEN

BACKGROUND: Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM: To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS: HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS: FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION: FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.


Asunto(s)
Autofagia , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Transducción de Señal , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Animales , Autofagia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Células Hep G2 , Ratones , Masculino , Estrés Oxidativo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Lipogénesis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología
13.
Heliyon ; 10(15): e34716, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144993

RESUMEN

Objective: The current study aimed to investigate the potential therapeutic impact of allantoin on diabetes produced by a high-fat diet (HFD) and streptozotocin (STZ) in rats. Subjects and methods: Male Sprague-Dawley rats were fed a high-fat diet to induce insulin resistance, followed by streptozotocin injection to induce diabetes. The effect of oral treatment of allantoin (200, 400 and 800 mg/kg/day) for 8 weeks was evaluated by calculating the alteration in metabolic parameters, biochemical indicators, the oral glucose tolerance tests (OGTT) and hyperinsulinemic-euglycemic clamp tests were performed. Histopathological studies were performed in the liver, kidney and pancreas. Next, the expressions of the MAPK and insulin signaling pathway were measured by Western blot analysis to elucidate the potential mechanism underlying these antidiabetic activities. Results: The administration of allantoin resulted in a significant decrease in fasting blood glucose (FBG) levels, glycogen levels, and glycosylated hemoglobin levels in diabetic rats. Additionally, allantoin therapy led to a dose-dependent increase in body weight growth and serum insulin levels. In addition, the administration of allantoin resulted in a considerable reduction in lipid profile levels and amelioration of histological alterations in rats with diabetes. The administration of allantoin to diabetic rats resulted in a notable decrease in Malondialdehyde (MDA) levels, accompanied by an increase in the activity of antioxidant enzymes in the serum, liver, and kidney. The findings of oral glucose tolerance and hyperinsulinemic-euglycemic clamp tests demonstrated a significant rise in insulin resistance following the administration of allantoin. The upregulation of IRS-2/PI3K/p-Akt/GLUT expression by allantoin suggests a mechanistic relationship between the PI3K/Akt signaling pathway and the antihyperglycemic activity of allantoin. Furthermore, it resulted in a reduction in the levels of TGF-ß1/p38MAPK/Caspase-3 expression in the aforementioned rat tissues affected by diabetes. Conclusions: This study implies that allantoin treats type 2 diabetes by activating PI3K. Additionally, it reduces liver, kidney, and pancreatic apoptosis and inflammation-induced insulin resistance.re.

14.
Ecotoxicol Environ Saf ; 283: 116969, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39216220

RESUMEN

Novel Psychoactive Substances (NPS) derived from tryptamines has been detected in aquatic environments, leading to environmental toxicology concerns. However, the specific toxicological mechanism, underlying these NPS, remains unclear. In our previous work, we used 5-Methoxy-N-isopropyl-N-methyltryptamine (5-MeO-MiPT) as the representative drug for NPS, and found that, 5-MeO-MiPT led to obvious behavioral inhibition and oxidative stress responses in zebrafishes model. In this study, Zebrafish were injected with varying concentrations of 5-MeO-MiPT for 30 days. RNA-seq, qPCR, metabolomics, and histopathological analyses were conducted to assess gene expression and tissue integrity. This study confirms that 5-MeO-MiPT substantially influences the transcription and expression of 13 selected genes, including ucp1, pet100, grik3, and grik4, mediated by the Gαq/11-PLCß signaling pathway. We elucidate the molecular mechanism that 5-MeO-MiPT can inhibit DAG-Ca2+/Pkc/Erk, Pkc/Pla2/PLCs and Ca2+/Camk Ⅱ/NMDA, while enhance Ca2+/Creb. Those secondary signaling pathways may be the mechanisms mediating 5-MeO-MiPT inhibiting normal behavior in zebrafish. These findings offer novel insights into the toxicological effects and addiction mechanisms of 5-MeO-MiPT. Moreover, it presents promising avenues for investigating other tryptamine-based NPS and offers a new direction for diagnosing and treating liver-brain pathway-related diseases.


Asunto(s)
Transducción de Señal , Triptaminas , Pez Cebra , Animales , Transducción de Señal/efectos de los fármacos , Triptaminas/toxicidad , Fosfolipasa C beta/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Psicotrópicos/toxicidad , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Brain Res ; 1845: 149135, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39155035

RESUMEN

Vascular dementia (VD) is a disease characterized by cognitive impairment and memory loss due to brain cell damage caused by cerebral vascular ischemia. Danggui-Shaoyao-San (DSS) has been used clinically to treat diseases for centuries. The VD model was established by bilateral common carotid artery (BCCA) repeated ischemia-reperfusion (I/R) and caudal bleeding. Target prediction of DSS and miR-124 in PI3K/Akt signaling pathway by network pharmacology. The effect of DSS on cognitive dysfunction were evaluated through methods such as behavioral experiments, cerebral blood flow monitoring, HE and Nissl staining, western blot, and q-PCR. Prediction result showed that both DSS and miR-124 could target Akt1. DSS treatment significantly reduced hippocampal cell damage, improved learning and memory ability. Mechanically, DSS treatment up-regulated the expression levels of PI3K and Akt protein, and its gene. Bcl-2/Bax index is up-regulated and cell apoptosis reduced. LC3II/LC3I index decreased and autophagy of brain cells increased. Moreover, DSS down-regulated the expression level of miR-124. And inhibition of miR-124 up-regulate the expression of PI3K, Akt. These results suggested that DSS can reduce the content of miR-124 in the hippocampus of VD mice, thus regulating the PI3K/Akt signaling pathway and improving the learning and memory ability of VD mice.

16.
Int J Biol Macromol ; 277(Pt 1): 133667, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38969038

RESUMEN

Targeting macrophages to regulate the tumor microenvironment is a promising strategy for treating cancer. This study developed a stable nano drug (PAP-SeNPs) using Se nanoparticles (SeNPs) and the Pholiota adiposa polysaccharide component (PAP-1a) and reported their physical stability, M2-like macrophages targeting efficacy and anti-hepatoma immunotherapy potential, as well as their molecular mechanisms. Furthermore, the zero-valent and well-dispersed spherical PAP-SeNPs were also successfully synthesized with an average size of 55.84 nm and a negative ζ-potential of -51.45 mV. Moreover, it was observed that the prepared PAP-SeNPs were stable for 28 days at 4 °C. Intravital imaging highlighted that PAP-SeNPs had the dual effect of targeting desirable immune organs and tumors. In vitro analyses showed that the PAP-SeNPs polarized M2-like macrophages towards the M1 phenotype to induce hepatoma cell death, triggered by the time-dependent lysosomal endocytosis in macrophages. Mechanistically, PAP-SeNPs significantly activated the Tlr4/Myd88/NF-κB axis to transform tumor-promoting macrophages into tumor-inhibiting macrophages and successfully initiated antitumor immunotherapy. Furthermore, PAP-SeNPs also enhanced CD3+CD4+ T cells and CD3+CD8+ T cells, thereby further stimulating anti-hepatoma immune responses. These results suggest that the developed PAP-SeNPs is a promising immunostimulant that can assist hepatoma therapy.


Asunto(s)
Carcinoma Hepatocelular , Inmunoterapia , Neoplasias Hepáticas , Nanopartículas , Pholiota , Selenio , Macrófagos Asociados a Tumores , Animales , Selenio/química , Selenio/farmacología , Ratones , Nanopartículas/química , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Inmunoterapia/métodos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Pholiota/química , Humanos , Línea Celular Tumoral , Polisacáridos/química , Polisacáridos/farmacología , Células RAW 264.7 , Receptor Toll-Like 4/metabolismo , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo
17.
Genes (Basel) ; 15(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062724

RESUMEN

TGF-ß1/Smads is a classic signaling pathway, which plays important roles in the development process of organisms. Black porgy Acanthopagrus schlegelii and red porgy Pagrus major are valuable economic fishes, and their hybrid offspring show excellent heterosis traits. Yet the molecular regulation mechanism of the heterosis traits is less clear. Here, we explored the TGF-ß1/Smads pathway's molecular genetic information for heterosis in A. schlegelii ♂ × P. major ♀ (AP) and A. schlegelii ♀ × P. major ♂ (PA) in terms of growth and development. The mRNA expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different developmental stages of A. schlegelii were detected. Furthermore, the expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different tissues of adult (mRNA level) and larva (mRNA and protein level) of A. schlegelii, P. major, and their hybrids were determined by both real-time quantitative PCR and Western blot techniques. The results indicated the ubiquitous expression of these genes in all developmental stages of A. schlegelii and in all tested tissues of A. schlegelii, P. major, and its hybrids. Among them, the mRNA of TGF-ß1, TßR-I, and TßR-II genes is highly expressed in the liver, gill, kidney, and muscle of black porgy, red porgy, and their hybrid offspring. There are significant changes in gene and protein expression levels in hybrid offspring, which indirectly reflect hybrid advantage. In addition, there was no correlation between protein and mRNA expression levels of Smad2 protein. The results provide novel data for the differential expression of growth and development genes between the reciprocal hybridization generation of black porgy and red porgy and its parents, which is conducive to further explaining the molecular regulation mechanism of heterosis in the growth and development of hybrid porgy.


Asunto(s)
Vigor Híbrido , Proteína Smad2 , Factor de Crecimiento Transformador beta1 , Animales , Proteína Smad2/genética , Proteína Smad2/metabolismo , Vigor Híbrido/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Hibridación Genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Perciformes/genética , Perciformes/crecimiento & desarrollo , Perciformes/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Femenino , Masculino , Regulación del Desarrollo de la Expresión Génica
18.
J Ethnopharmacol ; 334: 118544, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013542

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: WenTongGanPi Decoction (WTGPD) is a representative medical practice of the Fuyang School of Traditional Chinese Medicine (TCM), which originated from the classical Lu's Guizhi method. WTGPD places emphasis on the balance and functionality of yang qi, and is effective in treating TCM symptoms related to liver qi stagnation and spleen yang deficiency. In TCM, diarrhea-predominant irritable bowel syndrome (IBS-D) is often diagnosed as liver depression and spleen deficiency, and the use of WTGPD has shown significant therapeutic effect. However, the underlying mechanism of WTGPD treating IBS-D remains unclear. AIM OF THE STUDY: To explore the effect and mechanism of WTGPD in the treatment of IBS-D. MATERIALS AND METHODS: An IBS-D model with liver depression and spleen deficiency was constructed by chronic immobilization stress stimulation and sennae folium aqueous gavage. The impact of WTGPD on IBS-D rats was evaluated through measurements of body weight, fecal water content, and abdominal withdrawal reflex (AWR). Intestinal permeability was assessed using hematoxylin-eosin (HE), alcian blue-periodic acid schiff (AB-PAS), immunofluorescence (IF) staining, and quantitative real-time PCR (qRT-PCR). The components of WTGPD were analyzed using UPLC-Q-TOF-MS. The underlying mechanisms were investigated through network pharmacology, transcriptomics sequencing, western blot (WB), molecular docking, and 16S rRNA sequencing. RESULTS: WTGPD treatment effectively alleviated diarrhea and abnormal pain in IBS-D rats (P < 0.05). It enhanced the intestinal barrier function by improving colonic structure and increasing the expression of tight junction proteins (P < 0.05). A total of 155 components were identified in WTGPD. Both network pharmacology and transcriptomics sequencing analysis highlighted MAPK as the key signaling pathway in WTGPD's anti-IBS-D effect. The WB results showed a significant decrease in p-p38, p-ERK and p-JNK expression after WTGPD treatment (P < 0.0001). Guanosine, adenosine and hesperetin in WTGPD may be involved in regulating the phosphorylation of p38, ERK and JNK. Additionally, WTGPD significantly enhanced microbial diversity and increased the production of colonic valeric acid in IBS-D rats (P < 0.01). CONCLUSION: In conclusion, our findings suggest that WTGPD can effectively alleviate IBS-D and improve intestinal barrier likely via inhibiting MAPK signal pathway and improving micobial dysbiosis.


Asunto(s)
Diarrea , Medicamentos Herbarios Chinos , Mucosa Intestinal , Síndrome del Colon Irritable , Ratas Sprague-Dawley , Síndrome del Colon Irritable/tratamiento farmacológico , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Diarrea/tratamiento farmacológico , Ratas , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Modelos Animales de Enfermedad , Permeabilidad , Simulación del Acoplamiento Molecular
19.
Artículo en Inglés | MEDLINE | ID: mdl-38980409

RESUMEN

Oral lichen planus (OLP) is a carcinogenic chronic inflammatory oral disease, which lacks effective treatments. Fraxin is an active ingredient of the traditional Chinese medicine Qin Pi, which has an anti-inflammatory effect, but its effect on OLP is unclear. The aim of this study was to investigate the therapeutic effect of fraxin on OLP and the underlying mechanism. Human immortalized keratinocytes (HaCat) were incubated with fraxin (10, 20, or 40 µM) for 48 h and then treated with 10 µg/mL LPS for 24 h. Cell viability and apoptosis were detected. Next, the interaction between OCT3 and FGF2 was predicted by online database and verified by Co-IP analysis. Fraxin, Ad-OCT3, sh-OCT3, and sh-FGF2 were, respectively, applied to treat LPS-incubated HaCat cells, and cell viability, apoptosis, and secretion of inflammatory factors were detected with MTT, flow cytometry, and ELISA assays. Then, the involvement of OCT3 and FGF2 in the prevention of fraxin on HaCat cells from LPS-induced cell apoptosis and inflammation was investigated through multiple rescue experiments. In addition, OLP models were constructed in VDR-/- mice and NOD/SCID mice by injecting with human OLP pathological tissue homogenates to verify the therapeutic effect of fraxin on OLP. Fraxin treatment increased cell viability and reduced cell apoptosis and the secretion of IL-6 and TNF-α in a dose-dependent manner. OCT3 was significantly upregulated in oral mucosa tissues of OLP mice. OCT3 silencing inhibited LPS-induced cell apoptosis and secretion of inflammatory factors. Fraxin incubation reduced the expression of OCT3, and OCT3 interacted with FGF2 to upregulate FGF2 protein. FGF2 silencing reduced the expression of p-p65/NF-κB protein and improved LPS-induced cell apoptosis and secretion of inflammatory factors. OCT3 overexpression increased the expression of FGF2 and p-p65/NF-κB proteins, rh-FGF2 aggravated this effect, while FGF2-Neu-Ab reversed this effect. The results of in vivo experiments showed that fraxin alleviated cell apoptosis and inflammation in oral buccal mucosa tissues of OLP mice. Fraxin inhibited cell apoptosis and inflammation by suppressing OCT3-mediated activation of the FGF2/NF-κB pathway, alleviating the progression of OLP.

20.
J Ethnopharmacol ; 335: 118575, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39009326

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Guilu Erxian Glue (GEG) and Danggui Buxue Tang (DBT) are traditional Chinese herbal formulas. According to the theory of traditional Chinese medicine, the combination of those two formulas (Modified Guilu Erxian Glue, MGEG) has the effects of tonifying the kidney and producing blood, was usually used to treat bone marrow failure diseases, including aplastic anemia (AA). AIM OF THE STUDY: T lymphocytes play a crucial role in the disease pathogenesis and progression of AA. Our preliminary results confirmed that GEG can improve the damage of hematopoietic stem cells in mice, while DBT can reduce the proliferation and differentiation of T lymphocytes and inhibit the production of IFN-γ. We hypothesized that the combination of those two herbal formulas could inhibit immune attack and restore hematopoietic function through multiple mechanisms. In this study, we aim to study the curative effect of MGEG on regulating the expression of Signal lymphocyte activating molecule (SLAM), an activation-related molecule in T lymphocytes, thereby suppressing the immune function of T cells and decelerating the damage to hematopoietic stem cells. MATERIALS AND METHODS: High-performance liquid chromatography-electrospray ionization/mass spectrometry system was used to identify the components of the MGEG formulation. Induction of aplastic anemia mouse model by injecting allogeneic lymphocyte suspension into BABL/c mice after ionizing radiation. Cyclosporine A (CsA) was used as a positive control drug. Flow cytometry was used to detect the number and apoptosis rate of hematopoietic stem cells in the bone marrow. Enzyme-linked immunosorbent assay was performed to measure the levels of IFN-γ and TNF-α. Immunofluorescence staining was used to assess the expression of T-bet and SLAM-SAP. Western Blot was conducted to examine the expression of activation-related molecules in T lymphocytes and proteins related to the Fas signal pathway. Hematoxylin-eosin staining was performed to observe pathological changes in the bone marrow tissue. Wright-Giemsa staining was utilized to evaluate alterations in the cellular composition and basic structure of the bone marrow cells (BMCs). Transmission electron microscopy was employed to observe changes in the structure and morphology of hematopoietic stem cells. The hematology analyzer was used to detect peripheral blood parameters. RESULTS: Twenty-three different components were identified in MGEG. After MGEG treatment, the expression levels of Fyn and SLAM-SAP binding were increased in AA mice, while the expression levels of T-bet were decreased and the secretion of IFN-γ was reduced significantly. Additionally, MGEG also could downregulate the protein levels of Fas, caspase-3, and cleaved caspase-3 in AA mice. CONCLUSION: MGEG could attenuate the production of IFN-γ by promoting the SLAM-SAP signal pathway to regulate the generation and distribution of T-bet in T cells. Additionally, it suppresses apoptosis of HSCs through intervention in the Fas-dependent pathway, thereby mitigating immune-mediated damage to HSCs.


Asunto(s)
Anemia Aplásica , Apoptosis , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Células Madre Hematopoyéticas , Transducción de Señal , Animales , Anemia Aplásica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Apoptosis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Ratones Endogámicos BALB C , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA