Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biochem Pharmacol ; 229: 116524, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251142

RESUMEN

Gut microbiota dysbiosis is linked to vascular wall disease, but the mechanisms by which gut microbiota cross-talk with the host vascular cells remain largely unknown. Shikimic acid (SA) is a biochemical intermediate synthesized in plants and microorganisms, but not mammals. Surprisingly, recent metabolomic profiling data demonstrate that SA is detectable in human and murine blood. In this study, analyzing data from germ-free rats, we provide evidence in support of SA as a bona fide gut microbiota-derived metabolite, emphasizing its biological relevance. Since vascular cells are the first cells exposed to circulating metabolites, in this study, we examined, for the first time, the effects and potential underlying molecular mechanisms of SA on vascular smooth muscle cell (VSMC) proliferation and migration, which play a key role in occlusive vascular diseases, such as post-angioplasty restenosis and atherosclerosis. We found that SA inhibits the proliferation and migration of human coronary artery SMCs. At the molecular level, unexpectedly, we found that SA activates, rather than inhibits, multiple pro-mitogenic signaling pathways in VSMCs, such as ERK1/2, AKT, and mTOR/p70S6K. Conversely, we found that SA activates the anti-proliferative AMP-activated protein kinase (AMPK) in VSMCs, a key cellular energy sensor and regulator. However, loss-of-function experiments demonstrate that AMPK does not mediate the inhibitory effects of SA on VSMC proliferation. In conclusion, these studies demonstrate that a microbiota-derived metabolite, SA, inhibits VSMC proliferation and migration in vitro and prompt further evaluation of the possible underlying molecular mechanisms and the potential protective role in VSMC-related vascular wall disease in vivo.

2.
ACS Synth Biol ; 13(9): 2873-2886, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39208264

RESUMEN

Vanillin is a widely used flavoring compound in the food, pharmaceutical, and cosmetics area. However, the biosynthesis of vanillin from low-cost shikimic acid is significantly hindered by the low activity of the rate-limiting enzyme, caffeate O-methyltransferase (COMT). To screen COMT variants with improved conversion rates, we designed a biosensing system that is adaptable to the COMT-mediated vanillin synthetic pathway. Through the evolution of aldehyde transcriptional factor YqhC, we obtained a dual-responsive variant, MuYqhC, which positively responds to the product and negatively responds to the substrate, with no response to intermediates. Using the MuYqhC-based vanillin biosensor, we successfully identified a COMT variant, Mu176, that displayed a 7-fold increase in the conversion rate compared to the wild-type COMT. This variant produced 2.38 mM vanillin from 3 mM protocatechuic acid, achieving a conversion rate of 79.33%. The enhanced activity of Mu176 was attributed to an enlarged binding pocket and strengthened substrate interaction. Applying Mu176 to Bacillus subtilis increased the level of vanillin production from shikimic acid by 2.39-fold. Further optimization of the production chassis, increasing the S-adenosylmethionine supply and the precursor concentration, elevated the vanillin titer to 1 mM, marking the highest level of vanillin production from shikimic acid in Bacillus. Our work highlights the significance of the MuYqhC-based biosensing system and the Mu176 variant in vanillin production.


Asunto(s)
Benzaldehídos , Técnicas Biosensibles , Metiltransferasas , Benzaldehídos/metabolismo , Benzaldehídos/química , Técnicas Biosensibles/métodos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Hidroxibenzoatos/metabolismo
3.
Foods ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928808

RESUMEN

The wide ampelographic treasure of Italian wine grape varieties is driving research towards suitable approaches for the varietal authenticity control of wine. In this paper, Aglianico, Negroamaro, Primitivo and Uva di Troia red wines, which were produced experimentally by single-grape winemaking from non-aromatic grapes native to southern Italy, were analyzed with respect to berry markers, namely anthocyanins, hydroxycinnamic acids (HPLC-DAD), shikimic acid (HPLC-UV) and glycosidic aroma precursors (GC-MS). The study confirms that, just as for the berries, useful varietal authenticity markers for red wine, even after aging, turn out to be hydroxycinnamic acids, relative amounts of acylated forms of anthocyanins, and shikimic acid, together with some grape glycosidic precursors from terpenes and C13- norisoprenoids. Principal Component Analysis was used as a valuable tool to highlight the results.

4.
Microb Cell Fact ; 23(1): 162, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824548

RESUMEN

BACKGROUND: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS: An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 µM (26.2 mg/L). CONCLUSION: Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.


Asunto(s)
Biocatálisis , Escherichia coli , Ácido Gálico , Ingeniería Metabólica , Ácido Gálico/metabolismo , Ácido Gálico/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ácido Shikímico/metabolismo , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Biotransformación
5.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611807

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has evolved into a dangerous pathogen resistant to beta-lactam antibiotics (BLAs) and has become a worrisome superbug. In this study, a strategy in which shikimic acid (SA), which has anti-inflammatory and antibacterial activity, is combined with BLAs to restart BLA activity was proposed for MRSA treatment. The synergistic effects of oxacillin combined with SA against oxacillin resistance in vitro and in vivo were investigated. The excellent synergistic effect of the oxacillin and SA combination was confirmed by performing the checkerboard assay, time-killing assay, live/dead bacterial cell viability assay, and assessing protein leakage. SEM showed that the cells in the control group had a regular, smooth, and intact surface. In contrast, oxacillin and SA or the combination treatment group exhibited different degrees of surface collapse. q-PCR indicated that the combination treatment group significantly inhibited the expression of the mecA gene. In vivo, we showed that the combination treatment increased the survival rate and decreased the bacterial load in mice. These results suggest that the combination of oxacillin with SA is considered an effective treatment option for MRSA, and the combination of SA with oxacillin in the treatment of MRSA is a novel strategy.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Ácido Shikímico/farmacología , Monobactamas , Antibióticos Betalactámicos , Oxacilina/farmacología
6.
Talanta ; 272: 125850, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437760

RESUMEN

Efficient discrimination of amino acids (AAs) isomers is of significant importance for life science and analytical chemistry. Here, a dual-mode chiral discrimination strategy is proposed for visual and electrochemical chiral discrimination of tryptophan (Trp) isomers. Shikimic acid chiral ionic liquids (SCIL) is coordinated with copper ions (Cu2+), and the obtained SCIL-Cu2+ can form ternary complexes with the Trp isomers. Owing to the inherent chirality of SCIL and the reverse homochirality of L-Trp and D-Trp, the ternary complex of SCIL-Cu-D-Trp has higher stability than SCIL-Cu-L-Trp, as revealed by the calculated stability constants (K) and changes in Gibbs free energy (ΔG). The difference in the stability can be utilized for the chiral discrimination of L-Trp and D-Trp, resulting in discernible differences in colors and the electrochemical signals of the Trp isomers. Besides Trp, the isomers of phenylalanine (Phe) can also be discriminated by the proposed dual-mode chiral discrimination strategy with the SCIL-Cu2+ complex.

7.
J Agric Food Chem ; 72(6): 3077-3087, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38303604

RESUMEN

Corynebacterium glutamicum, a microorganism classified as generally recognized as safe for use in the industrial production of food raw materials and additives, has encountered challenges in achieving widespread adoption and popularization as microbial cell factories. These obstacles arise from the intricate nature of manipulating metabolic flux through conventional methods, such as gene knockout and enzyme overexpression. To address this challenge, we developed a CRISPR/dCpf1-based bifunctional regulation system to bidirectionally regulate the expression of multiple genes in C. glutamicum. Specifically, through fusing various transcription factors to the C-terminus of dCpf1, the resulting dCpf1-SoxS exhibited both CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) capabilities in C. glutamicum by altering the binding sites of crRNAs. The bifunctional regulation system was used to fine-tune metabolic flux from shikimic acid (SA) and l-serine biosynthesis, resulting in 27-fold and 10-fold increases in SA and l-serine production, respectively, compared to the original strain. These findings highlight the potential of the CRISPR/dCpf1-based bifunctional regulation system in effectively enhancing the yield of target products in C. glutamicum.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Serina/metabolismo , Ingeniería Metabólica/métodos
8.
World J Microbiol Biotechnol ; 40(2): 78, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253730

RESUMEN

Efforts to curtail the escalating health threat posed by methicillin-resistant Staphylococcus aureus (MRSA), a formidable superbug, necessitate the development of innovative treatment strategies. Leveraging potential compounds from natural sources in tandem with antibiotics has emerged as a promising approach against MRSA. These strategies should enhance the antibiotic efficacy, reduce dosage and toxicity, and bypass MRSA resistance. In this study, we used a checkerboard assay to illustrate the significant synergistic anti-MRSA effect of shikimic acid (SA), a naturally occurring compound, and ceftiofur (CF). Time-kill curves further revealed that a combination of 1/4 of the minimum inhibitory concentration (MIC) of SA and 1/8 MIC of the sodium CF eradicated MRSA within 2 h, with no noticeable toxicity observed with these concentrations. In vivo experiments confirmed that this combination therapy demonstrated robust antimicrobial activity against MRSA-induced bacteremia in mice, significantly reducing bacterial loads in the kidneys, liver, and spleen, attenuating inflammatory cell infiltration, and alleviating pathological damage. This study not only offers a compelling strategy, capitalizing on the synergistic potential of SA and CF, to rapidly address antibiotic resistance but also contributes significantly to the refinement of antimicrobial therapeutic strategies.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Ácido Shikímico/farmacología , Cefalosporinas/farmacología , Antibacterianos/farmacología
9.
Metab Eng ; 81: 123-143, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072358

RESUMEN

Nybomycin is an antibiotic compound with proven activity against multi-resistant Staphylococcus aureus, making it an interesting candidate for combating these globally threatening pathogens. For exploring its potential, sufficient amounts of nybomycin and its derivatives must be synthetized to fully study its effectiveness, safety profile, and clinical applications. As native isolates only accumulate low amounts of the compound, superior producers are needed. The heterologous cell factory S. albidoflavus 4N24, previously derived from the cluster-free chassis S. albidoflavus Del14, produced 860 µg L-1 of nybomycin, mainly in the stationary phase. A first round of strain development modulated expression of genes involved in supply of nybomycin precursors under control of the common Perm* promoter in 4N24, but without any effect. Subsequent studies with mCherry reporter strains revealed that Perm* failed to drive expression during the product synthesis phase but that use of two synthetic promoters (PkasOP* and P41) enabled strong constitutive expression during the entire process. Using PkasOP*, several rounds of metabolic engineering successively streamlined expression of genes involved in the pentose phosphate pathway, the shikimic acid pathway, supply of CoA esters, and nybomycin biosynthesis and export, which more than doubled the nybomycin titer to 1.7 mg L-1 in the sixth-generation strain NYB-6B. In addition, we identified the minimal set of nyb genes needed to synthetize the molecule using single-gene-deletion strains. Subsequently, deletion of the regulator nybW enabled nybomycin production to begin during the growth phase, further boosting the titer and productivity. Based on RNA sequencing along the created strain genealogy, we discovered that the nyb gene cluster was unfavorably downregulated in all advanced producers. This inspired removal of a part and the entire set of the four regulatory genes at the 3'-end nyb of the cluster. The corresponding mutants NYB-8 and NYB-9 exhibited marked further improvement in production, and the deregulated cluster was combined with all beneficial targets from primary metabolism. The best strain, S. albidoflavus NYB-11, accumulated up to 12 mg L-1 nybomycin, fifteenfold more than the basic strain. The absence of native gene clusters in the host and use of a lean minimal medium contributed to a selective production process, providing an important next step toward further development of nybomycin.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Streptomyces , Antibacterianos/farmacología , Staphylococcus aureus/genética , Staphylococcus aureus Resistente a Meticilina/genética , Ingeniería Metabólica , Metabolismo Secundario , Quinolonas
10.
Food Chem X ; 20: 100953, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37929267

RESUMEN

Chinese cherry is an economically important fruit crop native to China. Flavor quality is greatly influenced by compositions of soluble sugars and organic acids. To better understand the flavor quality of Chinese cherry, we determined sugar and acid components in thirty-eight landrace and cultivar collections, and two wild resources using the HPLC method. Glucose and fructose were the main components, accounting for 85.91% of soluble sugars. Malic acid was the predominant organic acid, with an average proportion of 65.73% of total acids. Correlation and PCA analysis revealed seven key indicators for evaluating fruit flavor. Compared with wild Chinese cherry, the cultivated collections exhibited higher levels of soluble sugars, especially fructose, and lower levels of organic acid, particularly malic acid in fruits. Finally, we have established grading criteria for seven flavor indicators in Chinese cherry. Our study provides valuable references for identifying flavor compounds and improving flavor quality of Chinese cherry.

11.
Front Pharmacol ; 14: 1265571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026972

RESUMEN

Numerous studies have shown that neuroinflammation is involved in the process of neuronal damage in neurodegenerative diseases such as Parkinson's disease (PD), for example, and that inhibiting neuroinflammation help improve PD. Shikimic acid (SA) has anti-inflammatory, analgesic and antioxidant activities in numerous diseases. However, its effect and mechanism in PD remain unclear. In this experiment, we found that SA inhibits production of pro-inflammatory mediators and ROS in LPS-induced BV2 cells. Mechanistic studies demonstrated that SA suppresses neuro-inflammation by activating the AKT/Nrf2 pathway and inhibiting the NF-κB pathway. Further in vivo study, we confirmed that SA ameliorated the neurological damage and behavioral deficits caused by LPS injection in mice. In summary, these study highlighted the beneficial role of SA as a novel therapy with potential PD drug by targeting neuro-inflammation.

12.
Plants (Basel) ; 12(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375876

RESUMEN

Glyphosate is a nonselective herbicide of systemic action that inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, thus compromising amino acid production and consequently the growth and development of susceptible plants. The objective of this study was to evaluate the hormetic effect of glyphosate on the morphology, physiology, and biochemistry of coffee plants. Coffee seedlings (Coffea arabica cv Catuaí Vermelho IAC-144) were transplanted into pots filled with a mixture of soil and substrate and subjected to ten doses of glyphosate: 0, 11.25, 22.5, 45, 90, 180, 360, 720, 1440, and 2880 g acid equivalent (ae) ha-1. Evaluations were performed using the morphological, physiological, and biochemical variables. Data analysis for the confirmation of hormesis occurred with the application of mathematical models. The hormetic effect of glyphosate on coffee plant morphology was determined by the variables plant height, number of leaves, leaf area, and leaf, stem, and total dry mass. Doses from 14.5 to 30 g ae ha-1 caused the highest stimulation. In the physiological analyses, the highest stimulation was observed upon CO2 assimilation, transpiration, stomatal conductance, carboxylation efficiency, intrinsic water use efficiency, electron transport rate, and photochemical efficiency of photosystem II at doses ranging from 4.4 to 55 g ae ha-1. The biochemical analyses revealed significant increases in the concentrations of quinic acid, salicylic acid, caffeic acid, and coumaric acid, with maximum stimulation at doses between 3 and 140 g ae ha-1. Thus, the application of low doses of glyphosate has positive effects on the morphology, physiology, and biochemistry of coffee plants.

13.
Plants (Basel) ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299097

RESUMEN

Herbicide-resistant weeds have been identified and recorded on every continent where croplands are available. Despite the diversity of weed communities, it is of interest how selection has led to the same consequences in distant regions. Brassica rapa is a widespread naturalized weed that is found throughout temperate North and South America, and it is a frequent weed among winter cereal crops in Argentina and in Mexico. Broadleaf weed control is based on glyphosate that is used prior to sowing and sulfonylureas or mimic auxin herbicides that are used once the weeds have already emerged. This study was aimed at determining whether a convergent phenotypic adaptation to multiple herbicides had occurred in B. rapa populations from Mexico and Argentina by comparing the herbicide sensitivity to inhibitors of the acetolactate synthase (ALS), 5-enolpyruvylshikimate-3-phosphate (EPSPS), and auxin mimics. Five B. rapa populations were analyzed from seeds collected in wheat fields in Argentina (Ar1 and Ar2) and barley fields in Mexico (Mx1, Mx2 and MxS). Mx1, Mx2, and Ar1 populations presented multiple resistance to ALS- and EPSPS-inhibitors and to auxin mimics (2,4-D, MCPA, and fluroxypyr), while the Ar2 population showed resistance only to ALS-inhibitors and glyphosate. Resistance factors ranged from 947 to 4069 for tribenuron-methyl, from 1.5 to 9.4 for 2,4-D, and from 2.7 to 42 for glyphosate. These were consistent with ALS activity, ethylene production, and shikimate accumulation analyses in response to tribenuron-methyl, 2,4-D, and glyphosate, respectively. These results fully support the evolution of the multiple- and cross-herbicide resistance to glyphosate, ALS-inhibitors, and auxinic herbicides in B. rapa populations from Mexico and Argentina.

14.
J Biomol Struct Dyn ; : 1-14, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243697

RESUMEN

The laxative properties of senna are attributed to the presence of sennosides produced in the plant. The low production level of sennosides in the plant is an important impediment to their growing demand and utilization. Understanding biosynthetic pathways helps to engineer them in terms of enhanced production. The biosynthetic pathways of sennoside production in plants are not completely known yet. However, attempts to get information on genes and proteins engaged in it have been made which decode involvement of various pathways including shikimate pathway. 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme involved in sennosides production through the shikimate pathway. Unfortunately, there is no information available on proteomic characterization of DAHPS enzyme of senna (caDAHPS) resulting in lack of knowledge about its role. We for the first time characterized DAHPS enzyme of senna using in-silico analysis. To the best of our knowledge this is the first attempt to identify the coding sequence of caDAHPS by cloning and sequencing. We found Gln179, Arg175, Glu462, Glu302, Lys357 and His420 amino acids in the active site of caDAHPS through molecular docking. followed by molecular dynamic simulation. The amino acid residues, Lys182, Cys136, His460, Leu304, Gly333, Glu334, Pro183, Asp492 and Arg433 at the surface interact with PEP by van der Waals bonds imparting stability to the enzyme-substrate complex. Docking results were further validated by molecular dynamics. The presented in-silico analysis of caDAHPS will generate opportunities to engineer the sennoside biosynthesis in plants.Communicated by Ramaswamy H. Sarma.

15.
J Agric Food Chem ; 71(23): 8906-8914, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37257042

RESUMEN

Shikimic acid (SA) is a compound extracted from the plant anise and has anti-inflammatory effects. However, any impact on intestinal inflammation or mechanisms involved has not been investigated. The present study used a dextran sulfate sodium (DSS)-induced mouse colitis model to investigate the effects of SA on intestinal inflammation. Intragastric administration of SA slowed DSS-induced weight loss, reduced disease activity index (DAI) score, enhanced the intestinal barrier, reduced the destruction of the colonic structure, inhibited the phosphorylation of key proteins in MAPK and NF-κB signaling pathways, inhibited the expression of inflammatory factors TNF-α, IL-1ß, and MPO (P < 0.05), decreased IFN-γ expression (P < 0.05), and increased immunoglobulin IgG content (P < 0.05). After 50 mg/kg SA treatment, the content of Bacteroidetes increased and Proteobacteria decreased in the cecal feces of mice with colitis (P < 0.05) and the richness of gut species increased. In conclusion, SA could improve intestinal inflammation and enhance intestinal immunity, indicating its suitability as a therapeutic candidate.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , FN-kappa B/metabolismo , Ácido Shikímico/metabolismo , Sulfato de Dextran/metabolismo , Transducción de Señal , Colon/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones Endogámicos C57BL
16.
Biotechnol Adv ; 62: 108073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36464143

RESUMEN

Shikimic acid (SA), a hydroaromatic natural product, is used as a chiral precursor for organic synthesis of oseltamivir (Tamiflu®, an antiviral drug). The process of microbial production of SA has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Corynebacterium glutamicum (141.2 g/L) and Escherichia coli (87 g/L) laid a solid foundation for the microbial fermentation production of SA. However, its industrial application is restricted by limitations such as the lack of fermentation tests for industrial-scale and the requirement of growth-limiting factors, antibiotics, and inducers. Therefore, the development of SA biosensors and dynamic molecular switches, as well as genetic modification strategies and optimization of the fermentation process based on omics technology could improve the performance of SA-producing strains. In this review, recent advances in the development of SA-producing strains, including genetic modification strategies, metabolic pathway construction, and biosensor-assisted evolution, are discussed and critically reviewed. Finally, future challenges and perspectives for further reinforcing the development of robust SA-producing strains are predicted, providing theoretical guidance for the industrial production of SA.


Asunto(s)
Escherichia coli , Ácido Shikímico , Ácido Shikímico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oseltamivir/metabolismo , Antivirales , Fermentación , Ingeniería Metabólica
17.
J Ethnopharmacol ; 302(Pt A): 115870, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36341819

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rubus idaeus Linnaeus (RI) is a Chinese herbal medicine that has been widely used in China for a long time to reinforce the kidney, nourish the liver, improve vision, and arrest polyuria. AIM OF THE STUDY: This work aims to evaluate the recent progress of the chemical composition, pharmacological activity, pharmacokinetics, metabolism, and quality control and of Rubus idaeus, which focuses on the insufficiency of existing research and will shed light on future studies of Rubus idaeus. METHODS: Literatures about "Rubus idaeus","Red raspberry" and "Fupenzi"are retrieved by browsing the database, such as Web of Science (http://www.webofknowledge.com/wos), Pubmed (https://pubmed.ncbi.nlm.nih.gov/), CNKI (http://www.cnki.net/), and Wanfang Data (http://www.wanfangdata.com.cn). In addition, related textbooks and digital documents are interrogated to provide a holistic and critical review of the topic. The period of the literature covered from 1981 to 2022. RESULTS: Approximately 194 compounds have been isolated from Rubus idaeus, which is rich in phenols, terpenoids, alkaloids, steroids, and fatty acids. Numerous investigations have demonstrated that Rubus idaeus exhibits many pharmacological activities, including hypoglycemic and hypolipidemic, anti-Alzheimer effect, anti-osteoporosis, hepatoprotective, anti-cancer, neuroprotective, anti-bacteria and skin care, etc. However, it is worth noting that most of the research is not associated with the conventional effect, such as reducing urination and treating opacity of the cornea. CONCLUSION: The effectiveness of Rubus idaeus has been proved by its long-term clinical application. The research on the pharmacological activity of Rubus idaeus has flourished. In many pharmacological experiments, only the high-dose group can achieve the corresponding efficacy, so the efficacy of Rubus idaeus needs to be further interrogated. Meanwhile, the relationship between pharmacological activity and specific compounds of Rubus idaeus has not been clarified yet. Last but not least, studies involving toxicology and pharmacokinetics are very limited. Knowledge of bioavailability and toxicological behavior of Rubus idaeus can help understand the herb's pharmacodynamic and safety profile.


Asunto(s)
Etnobotánica , Rubus , Etnofarmacología , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Control de Calidad , Fitoterapia
18.
Plants (Basel) ; 11(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36365275

RESUMEN

With this research, we aimed to determine the impact of grafting and rootstock seed treated with Streptomyces griseus (MT210913) (S. griseus) or shikimic acid (SA) at a 60 ppm concentration on tomato (Solanum lycopersicum L.) production grown under low-temperature conditions. Two open-field trials were performed during both winter seasons of 2020 and 2021 at the Experimental Farm, Faculty of Agriculture, Cairo University, Giza, Egypt. A tomato cultivar (Peto 86) was used as a scion and two tomato phenotypes were employed as rootstocks (Solanum cheesmaniae L. (line LA 524) and GS hybrid), as well as self-grafted as a control. Effects of sub-optimal temperature on vegetative growth, yield, and fruit quality were tested. The results indicate that, under cold stress, rootstock seed priming, especially with S. griseus, enhanced plant growth, total yield, and fruit quality properties. GS hybrid rootstock was more effective than that of S. cheesmaniae rootstock in terms of mitigating the negative effect of cold stress. GS hybrid, inoculated with S. griseus, increased the total yield per plant by 10.5% and 5.7% in the first and second seasons, respectively. Higher levels of GA3 and mineral content were noticed in leaves that were grafted and treated with S. griseus compared to the control treatment. Additionally, the great enhancing effects of all anatomical features of tomato plants were recorded with GS hybrid rootstock, inoculated by S. griseus. These results prove that grafting on GS hybrid rootstock treated with S. griseus is a potential choice to alleviate the cold stress of commercial tomato varieties.

19.
Bioresour Technol ; 364: 128060, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36195217

RESUMEN

This study aimed to evaluate differences in humic substance (HS) formation based on the shikimic acid pathway (SAP) during five different materials composting. The results showed that compared with other three materials, gallic acid, protocatechuic acid and shikimic acid of the SAP products in lawn waste (LW) and garden waste (GW) compost decreased significantly. Furthermore, as important indicators for evaluating humification, humic acid and degree of polymerization increased by 39.4%, 79.5% and 21.8%, 87.9% in LW and GW, respectively. Correlation analysis showed that SAP products were strongly correlated with HS fractions in LW and GW. Meanwhile, network analysis indicated that more core bacteria associated with both SAP products and HS were identified in LW and GW. Finally, the structural equation model proved that SAP had more significant contribution to humification improvement in LW and GW. These findings provided theoretical foundation and feasible actions to improve compost quality by the SAP.

20.
Chemosphere ; 308(Pt 3): 136468, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116622

RESUMEN

Glyphosate excessive use is reported in Brazilian citrus orchards, whereas there is speculation about its consequences and the published studies are contradictory and inconclusive. This study aimed to describe the possible harmful effects by simulating glyphosate drift directly to the leaves of ∼4-yr-old citrus plants. As major results, glyphosate doses >360 g ae ha-1 increased the shikimate accumulation in leaves (up to 2.3-times above control), which was increased after a second glyphosate application (up to 3.5-times above control), even after a 240-d interval. Interestingly, shikimate accumulation was occasionally related to a dose-response of the herbicide at specific times; however, the doses had their accumulation peak on determined dates. These accumulations were directly correlated to reduced net photosynthesis even months after the glyphosate sprays. Quantum productivity based on electron transport through the photosystem II and apparent electron transport reductions up to 17% were also observed during the entire experiment course. Similarly, quantum productivity based on CO2 assimilation of glyphosate sprayed leaves decreased up to four times compared to the control after the second application. Glyphosate doses >360 g ae ha-1 increased stomatal conductance and transpiration as the carboxylation efficiency decreased, evidencing a carbon drainage in the Calvin-Benson cycle. These metabolic and physiological disturbances suggest possible photooxidative damage and an increase in photorespiration, which may be a mitigation strategy by the citrus plants to glyphosate effects, by the cost of reducing the citrus fruit yield (up to 57%). It is concluded that glyphosate phytotoxicity damages citrus plants over time due to chronic disturbances in the shikimate pathway and photosynthesis, even when there are no symptoms. This study is the first report to demonstrate how glyphosate damages citrus trees beyond the shikimate pathway.


Asunto(s)
Citrus , Herbicidas , Carbono/farmacología , Dióxido de Carbono/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidad , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Ácido Shikímico/metabolismo , Árboles/metabolismo , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA