Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Environ Manage ; 366: 121648, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018864

RESUMEN

The purpose of this work is to produce keratin hydrolysate from sheep wool by alkaline hydrolysis and to assess its effectiveness in improving maize plant growth under greenhouse conditions. A hybrid response surface methodology with Box-Behnken design (RSM-BBD) was used to model and optimize the hydrolysis process. The synergistic effects between three critical independent variables including temperature, hydrolysis time, and concentration of KOH on the hydrolysis rate were statistically investigated and optimized. Under optimized conditions, a hydrolysis rate of 95.08% was achieved. The produced hydrolysate consists of water-soluble peptides, free amino acids and potassium ions, making it suitable to be used as a valuable agricultural input material for crop production. Amino acid analysis revealed high levels of proline and phenylalanine, which are responsible for water conditioning and the preservation of abiotic stress as readily available. The efficacy of the produced hydrolysate was assessed in the cultivation of maize as a crop model under greenhouse conditions. Results revealed that the application of the hydrolysate positively influenced the morphological traits of the maize crop such as plant height and leaf surface area. The magnitude of the response to the hydrolysate application depended on its concentration with the most positive effects observed at a dose 2 for the leaf's chlorophyll content, fresh shoot biomass and dry shoot biomass. The application of the hydrolysate improved fresh and dry shoot biomass by 32.5 and 34.4% compared to the control and contributed to the improvement of nitrogen use efficiency by the studied crop. The hydrolysate proved to be beneficial in improving overall plant growth and can be suitable and effective agricultural input for maize cultivation.


Asunto(s)
Queratinas , Lana , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Animales , Lana/crecimiento & desarrollo , Queratinas/metabolismo , Ovinos , Hidrólisis , Biomasa , Aminoácidos/metabolismo
2.
Materials (Basel) ; 17(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998419

RESUMEN

In the current work, the performance properties of natural-fibre-based thermal insulation materials were examined. For this purpose, three different compositions of natural fibres were prepared: pure sheep wool (SW), wool and industrial hemp (SW/HF) fibres, and pure industrial hemp (HF) fibres. Low-melt bicomponent polylactide (PLA) fibres were used as a binding material. For specimens prepared from natural fibres, the dependence of the thermal conductivity, the tensile strength along and across the direction of product formation, and the short-term water absorption on the density of the specimens and the flammability parameters were determined. In addition, to reduce the water absorption and flammability, the specimens were coated with hydrophobic agents and flame retardants. The obtained research results were also statistically processed. The analysis of the results showed that the thermal conductivity of natural-fibre-based thermal insulation materials varied within the range of 0.0333 ÷ 0.0438 W/(m·K), the tensile strength varied from 2.5 to 130 kPa, the short-term water absorption varied from 0.5 to 8.5 kg/m2, and the water vapour diffusion resistance factor varied from 2.537 to 2.667. It was additionally determined that all the studied products were flammable. The water absorption and flammability values were significantly reduced by the use of hydrophobic agents and flame retardants.

3.
Polymers (Basel) ; 16(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38794573

RESUMEN

The traditional textile use of wool as a valuable renewable material needs alternative applications in order to, besides sheep milk and meat, valorize currently unnecessary wool. Each type of product containing sheep wool requires wool with customized properties. Finding suitable physical and chemical modifications needed to develop new products while minimizing harmful side effects is a challenge for scientists. The presented review provides a brief overview of works published over the last decade associated with innovative wool scouring, dyeing, antifelting, and modification of its structure without the ambition to present complete, detailed data.

4.
Polymers (Basel) ; 16(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38475373

RESUMEN

Sheep farmers are currently facing an oversupply of wool and a lack of willing buyers. Due to low prices, sheep wool is often either dumped, burned, or sent to landfills, which are unsustainable and environmentally unfriendly practices. One potential solution is the utilization of sheep wool fibers in polymer composites. This paper focuses on the study of mechanical vibration damping properties, sound absorption, light transmission, electrical conductivity of epoxy (EP), polyurethane (PU), and polyester (PES) resins, each filled with three different concentrations of sheep wool (i.e., 0%, 3%, and 5% by weight). It can be concluded that the sheep wool content in the polymer composites significantly influenced their physical properties. The impact of light transmission through the tested sheep wool fiber-filled polymer composites on the quality of daylight in a reference room was also mathematically simulated using Wdls 5.0 software.

5.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959947

RESUMEN

In this work, the effect of prewetting native and electron beam-modified wool on the resulting sorption of Cu(II) from wool solutions was studied. The following conditions and combinations were applied: 6 mM and 50 mM solutions, prewetting time 0-24 h, contact time 1-24 h. The sorption results showed that wetting the wool before sorption from the low concentrated solution can fundamentally improve the efficiency of the separation process. The opposite result was achieved when applying a more concentrated solution; that is, prewetting slightly reduced the sorptivity. The reasons for such results are discussed. The application of these findings can be used to optimize the separation process in technological practice, however, will require solute specification.

6.
3 Biotech ; 13(1): 31, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36606139

RESUMEN

Peptones are one of the most expensive components of microbial culture media. The present study was conducted to test the usability of low-cost sheep wool peptone (SWP) as an organic nitrogen source in the production of six industrially important enzymes (lipase, amylase, tannase, pectinase, cellulase and invertase). SWP was prepared by alkaline hydrolysis and acid neutralization. Bacillus licheniformis and Aspergillus niger were selected as test microorganisms for enzyme production. To evaluate the efficacy of SWP in enzyme production, it was compared with commercial tryptone peptone (TP) in the shaking flask cultures of the test microorganisms. The optimum concentration of both SWP and TP was determined to be 8 g/L for the production of B. licheniformis-derived enzymes, but 6 g/L for the production of A. niger-derived enzymes. It was determined that SWP was superior to TP in the production of four enzymes (lipase, amylase, tannase and pectinase) of both B. licheniformis and A. niger. This is the first study about the usage of sheep wool protein hydrolysate (SWP) as an organic nitrogen source or a peptone in fermentative production of microbial enzymes.

7.
Compr Rev Food Sci Food Saf ; 22(1): 643-687, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527315

RESUMEN

The growing global population and lifestyle changes have increased the demand for specialized diets that require protein and other essential nutrients for humans. Recent technological advances have enabled the use of food bioresources treated as waste as additional sources of alternative proteins. Sheep wool is an inexpensive and readily available bioresource containing 95%-98% protein, making it an outstanding potential source of protein for food and biotechnological applications. The strong structure of wool and its indigestibility are the main hurdles to achieving its potential as an edible protein. Although various methods have been investigated for the hydrolysis of wool into keratin, only a few of these, such as sulfitolysis, oxidation, and enzymatic processes, have the potential to generate edible keratin. In vitro and in vivo cytotoxicity studies reported no cytotoxicity effects of extracted keratin, suggesting its potential for use as a high-value protein ingredient that supports normal body functions. Keratin has a high cysteine content that can support healthy epithelia, glutathione synthesis, antioxidant functions, and skeletal muscle functions. With the recent spike in new keratin extraction methods, extensive long-term investigations that examine prolonged exposure of keratin generated from these techniques in animal and human subjects are required to ascertain its safety. Food applications of wool could improve the ecological footprint of sheep farming and unlock the potential of a sustainable protein source that meets demands for ethical production of animal protein.


Asunto(s)
Queratinas , Lana , Animales , Cisteína/análisis , Cisteína/química , Queratinas/análisis , Queratinas/química , Ovinos , Lana/química
8.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501630

RESUMEN

The wool fibers of the Latxa sheep breed were combined with a soy protein isolate (SPI) matrix to develop sustainable biocomposites with acoustic properties, adding value to Latxa sheep wool, which is currently considered a residue. Samples with 7, 10, 15, and 20 wt % wool were prepared by freeze drying in order to develop porous structures, as shown by SEM analysis. Additionally, XRD analysis provided the evidence of a change toward a more amorphous structure with the incorporation of wool fibers due to the interactions between the soy protein and keratin present in wool fibers, as shown by the relative intensity changes in the FTIR bands. The biocomposites were analyzed in a Kundt's tube to obtain their sound absorption coefficient at normal incidence. The results showed an acoustic absorption coefficient that well-surpassed 0.9 for frequencies above 1000 Hz. This performance is comparable to that of the conventional synthetic materials present in the market and, thus, sheep wool/SPI biocomposites are suitable to be used as acoustic absorbers in the building industry, highlighting the potential of replacing not only synthetic fibers but also synthetic polymers, with natural materials to enhance the sustainability of the building sector.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36191441

RESUMEN

4,4-Dimethyl-substituted sterols are bioactive minor sterols of most animal fats and plant oils, but higher shares are present in lanolin (wool grease). Here, the isolation of the 4,4-dimethyl-substituted sterols dihydrolanosterol and lanosterol from lanolin by countercurrent chromatography (CCC) is described. An initial examination of the hexane extract of saponified lanolin showed the presence of relatively high portions of fatty alcohols which were known to co-elute with the target analytes in CCC. Hence, fatty alcohols were precipitated by urea complexation. Unexpectedly, 4,4-dimethyl-substituted sterols were also found in the crystalline fraction, while cholesterol and other desmethylsterols were detected in the liquid phase. Urea complexation represented a useful preparative method for the separation of desmethylsterols and 4,4-dimethyl-substituted sterols from lanolin. Shake flask experiments of 4,4-dimethyl-substituted sterols and fatty alcohols with 14 biphasic solvent systems indicated suitable partition coefficients (K values) with n-hexane/ethanol/water (12:8:1, v/v/v) and n-hexane/benzotrifluoride/acetonitrile (20:7:13, v/v/v). After initial tests with conventional CCC, the application of CCC in heart-cut recycling mode provided 4,4-dimethyl-substituted sterols with purities of 99 % (dihydrolanosterol) and 95 % (lanosterol).


Asunto(s)
Distribución en Contracorriente , Hexanos , Acetonitrilos , Animales , Colesterol , Distribución en Contracorriente/métodos , Etanol , Alcoholes Grasos , Lanolina , Lanosterol , Aceites de Plantas , Solventes , Esteroles , Urea , Agua
10.
Genes (Basel) ; 13(8)2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35893050

RESUMEN

Among the so-called sheep breeders interested in biological inheritance in the late eighteenth and early nineteenth centuries and well before Gregor Johann Mendel, J. M. Ehrenfels (1767-1843) produced some of the most cogent writings on the subject. Although earlier in his career Ehrenfels was a strong advocate of environmental factors as influencers on the appearance of organisms, as a result of his discussions with Imre Festetics, he became convinced that whatever is passed from parents to progeny is more important and it is dependent on a "genetic force, the mother of all living things". The sheep breeders kept issues of inheritance at the forefront of the Central European cultural context late into the nineteenth century.


Asunto(s)
Herencia , Animales , Cruzamiento , Patrón de Herencia , Masculino , Ovinos/genética
11.
Materials (Basel) ; 15(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268868

RESUMEN

An important goal to achieve sustainable development is to use raw materials that are easily recyclable and renewable, locally available, and eco-friendly. Sheep wool, composed of 60% animal protein fibers, 10% fat, 15% moisture, 10% sheep sweat, and 5% contaminants on average, is an easily recyclable, easily renewable, and environmentally friendly source of raw material. In this study, slump testing, compressive and flexural strengths, ultrasonic pulse velocity, sorptivity, and chloride penetration tests were investigated to assess the influence of wool fibers on the strength and transport properties of concrete composites. Ordinary Portland cement was used to make five concrete mixes incorporating conventional wool fibers (WFs) ranging from 0.5 to 2.5% and a length of 70 mm. The wool fibers were modified (MWFs) via a pre-treatment technique, resulting in five different concrete compositions with the same fiber content. The addition of WF and MWF to fresh concrete mixes resulted in a decrease in slump values. The compressive strength of concrete was reduced when wool fibers were added to the mix. The MWF mixes, however, achieved compressive strength values of more than 30 MPa after a 90-day curing period. Furthermore, by including both WF and MWF, the flexural strength was higher than that of plain concrete. In addition, adding fibers with volume fractions of up to 2% reduced the concrete composite's sorptivity rate and chloride penetration depths for both WF and MWF content mixes. Consequently, biomass waste like sheep wool could be recycled and returned to the field following the circular economy and waste valorization principles.

12.
Materials (Basel) ; 15(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35207888

RESUMEN

The current context provides, worldwide, the need to identify solutions for the thermal efficiency of constructions, through sustainable and innovative methods and products. A viable solution is to produce thermal insulating products by carding-folding technology, using natural fibres and recycled polyethylene terephthalate (rPET) and polyester (rPES) waste, converted to fibres. This paper presents experimental results obtained after testing several thermal insulation composite products produced using a mix of sheep wool, cellulose, rPET and rPES fibres. The results of the research demonstrate the thermal insulation properties but, at the same time, identify the benefits of using such materials on the quality of the air in the interior space (the ability to adjust humidity and reduce the concentration of harmful substances). At the same time, the advantages of using sheep wool composite mattresses concerning their resistance to insect attack is demonstrated when compared with ordinary thermal insulation materials. Finally, sensitivity elements of these composites are observed in terms of sensitivity to mould, and to contact with water or soil, drawing future research directions in the development of this type of materials.

13.
Food Chem ; 383: 132436, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35183955

RESUMEN

Keratin derived protein (KDP) was extracted from sheep wool using high pressure microwave technology and food acids and investigated for its potential as a novel dietary protein. The proximate composition, amino acid profile, element profile, in vitro cytotoxicity and digestibility of KDP were evaluated. Nutritive effects of KDP at 50% dietary supplementation were compared with a casein-based diet in a growing rat model for 95 days. Results indicate KDP to be rich in protein (86%), amino acid cysteine (8.8 g/100 g) and element selenium (0.29 µg/g). KDP was non-cytotoxic in vitro at ≤ 2 mg/mL concentration. There were no differences in the rat's weight gain compared to the control group (P > 0.05). Overall, the inclusion of the KDP in the diet was an effective substitute for casein protein at 50% and KDP has the potential to be used in the food industry as a novel dietary protein, free of fat and carbohydrate.


Asunto(s)
Queratinas , Lana , Aminoácidos/análisis , Alimentación Animal/análisis , Animales , Caseínas/análisis , Dieta/veterinaria , Proteínas en la Dieta/análisis , Queratinas/química , Valor Nutritivo , Ratas , Ovinos , Lana/química
14.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615315

RESUMEN

Raspberry fruits are a valuable source of bioactive compounds. The study used the modification of the substrate (coconut fibre), consisting of the use of various organic and mineral additives, in the soilless cultivation of raspberries. The additives influenced the biosynthesis of bioactive compounds in the raspberry fruits by modifying the sorption properties and the abundance of the substrate. The influence of the additives on the content of polyphenols was determined as well as their profile (UPLC-MS), antioxidant potential (ABTS), vitamin C content, and the activity of selected enzymes that are markers of stress and resistance to abiotic factors. In the study, a significant effect of these additives was observed on the biosynthesis of polyphenols in raspberry fruit. The highest increase in the content of these compounds in relation to the control sample (substrate-100% coconut fibre), namely 37.7%, was recorded in the case of fruit produced on coconut substrate enriched with sheep wool. These fruits were also characterised by a significantly different profile of these compounds. These changes were caused by readily available ammonium nitrogen and free amino acids in the decomposition of proteins contained in the sheep wool. This was confirmed by the recorded content of chlorophyll SPAD in the plant leaves and the activity of selected enzymes, which proves a low level of stress and good condition of the plants.


Asunto(s)
Rubus , Rubus/química , Frutas/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Polifenoles/análisis , Antioxidantes/análisis
15.
Molecules ; 26(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500638

RESUMEN

The effect of humidity on sheep wool during irradiation by an accelerated electron beam was examined. Each of the samples with 10%, 53%, and 97% relative humidity (RH) absorbed a dose of 0, 109, and 257 kGy, respectively. After being freely kept in common laboratory conditions, the samples were subjected to batch Co(II) sorption experiments monitored with VIS spectrometry for different lapses from electron beam exposure. Along with the sorption, FTIR spectral analysis of the wool samples was conducted for cysteic acid and cystine monoxide, and later, the examination was completed, with pH measuring 0.05 molar KCl extract from the wool samples. Besides a relationship to the absorbed dose and lapse, the sorptivity results showed considerable dependence on wool humidity under exposure. When humidity was deficient (10% RH), the sorptivity was lower due to limited transformation of cystine monoxide to cysteic acid. The wool pre-conditioned at 53% RH, which is the humidity close to common environmental conditions, demonstrated the best Co(II) sorptivity in any case. This finding enables the elimination of pre-exposure wool conditioning in practice. Under excessive humidity of 97% RH and enough high dose of 257 kGy, radiolysis of water occurred, deteriorating the sorptivity. Each wool humidity, dose, and lapse showed a particular scenario. The time and humidity variations in the sorptivity for the non-irradiated sample were a little surprising; despite the absence of electron irradiation, relevant results indicated a strong sensitivity to pre-condition humidity and lapse from the start of the monitoring.


Asunto(s)
Cobalto/química , Iones/química , Ovinos/metabolismo , Lana/química , Adsorción/fisiología , Animales , Cistina/química , Electrones , Humedad , Agua/química
16.
Electron. j. biotechnol ; 53: 23-32, Sep.2021. tab, fig
Artículo en Inglés | LILACS | ID: biblio-1444743

RESUMEN

BACKGROUND A previous genome-wide association study (GWAS) identified the kinesin family member 16B (KIF16B) as a candidate gene related to sheep wool production. In this work, DNA pool sequencing and SNPscanTM high-throughput genotyping methods were used to detect single-nucleotide polymor phisms (SNPs) in the sheep KIF16B gene. The correlations between the SNPs and wool length and greasy wool yield were systematically assessed. RESULTS Forty-five SNPs were identified and 37 of them were genotyped, including 10 exon mutations, 26 intron mutations, and 1 promoter region mutation. Most of the SNPs were of medium genetic diversity and at Hardy-Weinberg equilibrium (HWE). Among them, 10 SNPs were associated with greasy wool yield and 28 SNPs impact the wool length. Five specific SNPs were found to exert significant effects on the wool length in all body parts analyzed in this study. Furthermore, linkage disequilibrium (LD) analysis was conducted among SNP loci and they were found to be significantly associated with economically important traits. Two strongly linked SNP blocks were identified within these SNPs and they might exert significant impacts on the greasy wool yield and wool length. CONCLUSIONS The identified SNPs exert significant effects on wool production and could be considered as potential DNA markers for selecting the individuals with superior phenotypes


Asunto(s)
Animales , Lana/crecimiento & desarrollo , Ovinos/genética , Ovinos/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo/métodos
17.
Materials (Basel) ; 14(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066814

RESUMEN

Currently, the need to ensure adequate quality of air inside the living space but also the thermal efficiency of buildings is pressing. This paper presents the capacity of sheep wool heat-insulating mattresses to simultaneously provide these needs, cumulatively analyzing efficiency indicators for thermal insulation and indicators of improving air quality. Thus, the values obtained for the coefficient of thermal conductivity, and its resistance to heat transfer, demonstrate the suitability of their use for thermal insulation. The results of the permeability to water vapor characteristics on the sorption/desorption of water, air, demonstrate the ability to control the humidity of the indoor air and the results on the reduction of the concentration of formaldehyde, demonstrating their contribution to the growth of the quality of the air, and to reduce the risk of disease in the population.

18.
3 Biotech ; 11(5): 220, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33968565

RESUMEN

Over recent years, keratin has gained great popularity due to its exceptional biocompatible and biodegradable nature. It has shown promising results in various industries like poultry, textile, agriculture, cosmetics, and pharmaceutical. Keratin is a multipurpose biopolymer that has been used in the production of fibrous composites, and with necessary modifications, it can be developed into gels, films, nanoparticles, and microparticles. Its stability against enzymatic degradation and unique biocompatibility has found their way into biomedical applications and regenerative medicine. This review discusses the structure of keratin, its classification and its properties. It also covers various methods by which keratin is extracted like chemical hydrolysis, enzymatic and microbial treatment, dissolution in ionic liquids, microwave irradiation, steam explosion technique, and thermal hydrolysis or superheated process. Special emphasis is placed on its utilisation in the form of hydrogels, films, fibres, sponges, and scaffolds in various biotechnological and industrial sectors. The present review can be noteworthy for the researchers working on natural protein and related usage.

19.
Animals (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800154

RESUMEN

In Basilicata, southern Italy, a sheep landrace jeopardized of extinction is Gentile di Puglia due to low production levels, low market values of milk and meat, and replacement of wool with synthetic fibers. Due to these dynamics farmers progressively resort to intensive breeding systems, hence causing the gradual disappearance of the ovine sector, the withering of traditional breeding culture and the abandonment of internal and marginal territories. However, in changing climate, traditional agriculture is getting increased attention worldwide by the consumers who are embracing emerging sustainable food production. Thus, in the light of a possible conservation strategy, the study investigates the prospective market for a garment (pullover) produced with wool from Gentile di Puglia, and woven through traditional techniques. An integrated methodological approach based on choice experiments and Bass diffusion model was carried out in order to analyze the consumers' preferences, the penetration market of this innovative product and the new wool value for farmers. The results pointed out a potential demand focused on women aged 50 years and more and a recognized wool value to farmers of 55 € animal-1 (22 € kg-1). This new revenue could allow the reduction of the difference in gross margin between the Gentile di Puglia and the non-autochthonous intensively-farmed Comisana from 57% to 3%. The production of further wool garments for a wider demand could increase the economic sustainability of Gentile di Puglia, making it even more preferable than other highly productive breeds.

20.
Polymers (Basel) ; 12(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33137961

RESUMEN

Poly(lactic acid) (PLA) was plasticized with maleinized linseed oil (MLO) and further reinforced with sheep wool fibers recovered from the dairy industry. The wool fibers were firstly functionalized with 1 and 2.5 phr of tris(2-methoxyethoxy)(vinyl) (TVS) silane coupling agent and were further used in 1, 5, and 10 phr to reinforce the PLA/MLO matrix. Then, the composite materials were processed by extrusion, followed by injection-molding processes. The mechanical, thermal, microstructural, and surface properties were assessed. While the addition of untreated wool fibers to the plasticized PLA/MLO matrix caused a general decrease in the mechanical properties, the TVS treatment was able to slightly compensate for such mechanical losses. Additionally, a shift in cold crystallization and a decrease in the degree of crystallization were observed due to the fiber silane modification. The microstructural analysis confirmed enhanced interaction between silane-modified fibers and the polymeric matrix. The inclusion of the fiber into the PLA/MLO matrix made the obtained material more hydrophobic, while the yellowish color of the material increased with the fiber content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA