Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plants (Basel) ; 13(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999567

RESUMEN

Several Allium cepa L. varieties, representing a versatile set of vegetables widely utilized by consumers, are appreciated for their bioactive properties, including antimicrobial, anticarcinogenic, and antioxidant capacities. The aim of this study is to compare the morphometric characteristics and biochemical profiles of four cultivars of A. cepa, two of them represented by the perennial Sicilian landrace "Cipudda agghiarola" (Allium × proliferum (Moench) Schrader), widely known as the Egyptian walking onion (WO), and by the landrace "Cipudduzza" belonging to the variety known as aggregatum (ON), which were compared with two commercial cultivars of A. cepa var. cepa (onion), Stoccarda (OS) and Rossa Carmen (OR). The experimental trial was conducted in Catania (Sicily), following organic growing practices. The randomized complete block experimental design was adopted with one experimental factor, the genotype (GE) effect. The harvested plants were characterized for their main morphometric parameters, according to the International Plant Genetic Resources (IGPR) descriptors. The biochemical activity was assessed by analyzing the total phenolic content (TPC) and the total flavonoid content (TFC). The antioxidant capacity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC). The sugar profile (total sugars, sucrose, glucose, fructose, and fructooligosaccharides-FOS) and the volatile compounds by headspace-gas chromatography/mass spectrometry (HS-GC/MS) were also determined. The OR bulb exhibited the highest TPC (16.3 mg GAE/g d.w., p < 0.01) and TFC (8.5 mg QE/g d.w., p < 0.01), with the highest antioxidant capacity measured by the FRAP (27.1 µmol TE/g d.w., p < 0.01) and DPPH assays (46.2 µmol TE/g d.w., p < 0.01). The ON bulb showed the highest ORAC value (209 µmol TE/g d.w., p < 0.01). Generally, the bulbs were richer in sugars (584 mg/g d.w., p < 0.01) than the leaf blade (239 mg/g d.w., p < 0.01), except for OR. Significant interaction between the genotype and plant organ was noted in the volatile compound profiles (p < 0.05) except for total ketones and carboxylic acids, where higher content was observed in the leaf blade compared to the bulb, regardless of the genotype. These findings highlight WO's potential for use in ready-to-eat products, enhancing its market value.

2.
BMC Genom Data ; 25(1): 42, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711021

RESUMEN

BACKGROUND: Shallots are infected by various viruses like Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Shallot latent virus (SLV) and Shallot virus X (ShVX). In India, they have been found to be persistently infected by ShVX. ShVX also infects onion and garlic in combination with other carlaviruses and potyviruses. ShVX is a member of genus Allexivirus of family Alphaflexiviridae. ShVX has a monopartite genome, which is represented by positive sense single-stranded RNA. Globally, only six complete and 3 nearly complete genome sequences of ShV X are reported to date. This number is insufficient to measure a taxon's true molecular diversity. Moreover, the complete genome sequence of ShVX from Asia has not been reported as yet. Therefore, this study was undertaken to generate a complete genome sequence of ShVX from India. RESULTS: Shallot virus X (ShVX) is one of the significant threats to Allium crop production. In this study, we report the first complete genome sequence of the ShVX from India through Next-generation sequencing (NGS). The complete genome of the ShVX (Accession No. OK104171), from this study comprised 8911 nucleotides. In-silico analysis of the sequence revealed variability between this isolate and isolates from other countries. The dissimilarities are spread all over the genome specifically some non-coding intergenic regions. Statistical analysis of individual genes for site-specific selection indicates a positive selection in NABP region. The presence of a recombination event was detected in coat protein region. The sequence similarity percentage and phylogenetic analysis indicate ShVX Indian isolate is a distinctly different isolate. Recombination and site-specific selection may have a function in the evolution of this isolate. This is the first detailed study of the ShVX complete genome sequence from Southeast Asia. CONCLUSION: This study presents the first report of the entire genome sequence of an Indian isolate of ShVX along with an in-depth exploration of its evolutionary traits. The findings highlight the Indian variant as a naturally occurring recombinant, emphasizing the substantial role of recombination in the evolution of this viral species. This insight into the molecular diversity of strains within a specific geographical region holds immense significance for comprehending and forecasting potential epidemics. Consequently, the insights garnered from this research hold practical value for shaping ShVX management strategies and providing a foundation for forthcoming studies delving into its evolutionary trajectory.


Asunto(s)
Genoma Viral , Filogenia , Secuenciación Completa del Genoma , India/epidemiología , Genoma Viral/genética , Selección Genética , Recombinación Genética , Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Enfermedades de las Plantas/virología
3.
Pak J Biol Sci ; 27(2): 80-89, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38516749

RESUMEN

<b>Background and Objective:</b> Anthracnose in shallot contributes to significant losses. To solve this issue, silica nanoparticles, in combination with <i>Bacillus velezensis</i> and <i>Bacillus thuringiensis</i> were used together. <b>Materials and Methods:</b> <i>In vitro</i> antagonistic test of <i>Bacillus velezensis</i> B-27 with <i>Colletotrichum gloeosporioides</i> was carried out using dual culture and co-culture methods. Treatment in greenhouse experiments was carried out using single application of silica, <i>B. thuringiensis</i>, <i>B. velezensis</i>, a combination of <i>B. thuringiensis</i> and <i>B. velezensis</i> and a combination of <i>B. thuringiensis</i>, <i>B. velezensis</i> and silica. Detection of <i>B. velezensis</i> in the roots of shallot plants was carried out by PCR using a pair of specific primers. <b>Results:</b> <i>Bacillus velezensis</i> was able to inhibit the growth of <i>C. gloeosporioides</i> mycelium <i>in vitro</i>, both in the dual culture and co-culture methods, by 62.8 and 77.17%, respectively. Treatment of <i>B. thuringiensis</i> and <i>B. velezensis</i>, either individually or in combination with silica, could reduce the intensity of anthracnose disease by 20% each and stimulate the growth of shallot plants. The PCR detection using specific primers on the roots of shallot plants showed that <i>B. velezensis</i> was detected with a DNA band length of ±576 bp. <b>Conclusion:</b> <i>Bacillus velezensis</i> can inhibit the growth of <i>C. gloeosporioides</i> mycelium <i>in vitro</i>. Applying <i>B. velezensis</i>, <i>B. thuringiensis</i> and silica can reduce the intensity of anthracnose disease, promote plant growth and increase plant productivity. Furthermore, <i>B. velezensis</i> was detected in the roots of shallot plants, revealing that the bacteria are well-established.


Asunto(s)
Bacillus thuringiensis , Bacillus , Chalotes , Plantas
4.
Microorganisms ; 11(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38138005

RESUMEN

Fusarium oxysporum f. sp. cepae (Foc) causes basal rot disease in Allium species, including onions (Allium cepa L.) and shallots (A. cepa L. Aggregatum group). Among Allium species, shallots can be crossbred with onions and are relatively more resistant to Foc than onions. Thus, shallots are considered a potential disease-resistant resource for onions. However, the mechanisms underlying the molecular interactions between shallots and Foc remain unclear. This study demonstrated that SIX5, an effector derived from Foc (FocSIX5), acts as an avirulence effector in shallots. We achieved this by generating a FocSIX5 gene knockout mutant in Foc, for which experiments which revealed that it caused more severe wilt symptoms in Foc-resistant shallots than the wild-type Foc and FocSIX5 gene complementation mutants. Moreover, we demonstrated that a single amino acid substitution (R67K) in FocSIX5 was insufficient to overcome shallot resistance to Foc.

5.
BMC Res Notes ; 16(1): 324, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946241

RESUMEN

BACKGROUND: Eel (Anguilla bicolor bicolor) is an Indonesian export commodity. However, it is facing a problem related to Aeromonas hydrophila, which can cause motile aeromonas septicemia (MAS) and produce biofilm formation. Problem with antibiotic resistance challenges the need of an alternative treatment. Therefore, it is important to explore a solution to treat infection and the biofilm formed by A. hydrophila. OBJECTIVES: In this study, we used shallot skin powder and actinomycetes metabolite 20 PM as antimicrobe and antibiofilm to treated eels infected with A. hydrophila. RESULTS: Shallot skin powder (6.25 g 100 g-1 feed) and Actinomycetes 20 PM metabolite (2 mL 100 g-1 feed) were found to be effective as antimicrobe and antibiofilm agent in treating eels infected with A. hydrophila. Eel treated with antibiotic, shallot skin powder, and actinomycetes metabolite had 80%, 66%, and 73% survival rates, respectively. Other indicators such as red blood cell count, hemoglobin, and hematocrit were increased, but white blood cell count and phagocytic activity were dropped. Biofilm destruction were analyzed using scanning electron microscopy to determined antibiofilm activity of actinomycetes metabolite against biofilm of A. Hydrophila. CONCLUSIONS: Shallot skin powder and actinomycetes metabolite were potential to treat infection of A. hydrophila in eel as an alternative treatment to antibiotics.


Asunto(s)
Actinobacteria , Anguilla , Infecciones por Bacterias Gramnegativas , Chalotes , Animales , Aeromonas hydrophila , Polvos , Actinomyces , Biopelículas
6.
J Diabetes Metab Disord ; 22(1): 547-570, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37255832

RESUMEN

Purpose: Small molecule glucokinase (GK) modulators not only decrease fasting and basal plasma sugar contents but also progress glucose tolerance. The hydro-ethanolic extract of the Persian shallot (Allium hirtifolium Boiss.) decreased blood glucose, improved plasma insulin and amplified GK action. The present study was proposed to screen phytoconstituents from Persian shallot as human GK activators using in silico docking studies. Methods: A total of 91 phytoconstituents reported in Persian shallot (A. hirtifolium Boiss.) were assessed in silico for the prediction of drug-like properties and molecular docking investigations were carried out with human GK using AutoDock vina with the aim of exploring the binding interactions between the phytoconstituents and GK enzyme followed by in silico prediction of toxicity. Results: Almost all the phytoconstituents tested showed good pharmacokinetic parameters for oral bioavailability and drug-likeness. In the docking analysis, cinnamic acid, methyl 3,4,5-trimethoxy benzoate, quercetin, kaempferol, kaempferol 3-O-ß-D-glucopyranosyl-(1- > 4)-glucopyranoside, 5-hydroxy-methyl furfural, ethyl N-(O-anisyl) formimidate, 2-pyridinethione and ascorbic acid showed appreciable hydrogen bond and hydrophobic type interactions with the allosteric site residues of the GK enzyme. Conclusion: These screened phytoconstituents may serve as promising hit molecules for further development of clinically beneficial and safe allosteric activators of the human GK enzyme.

7.
Pathogens ; 12(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36678477

RESUMEN

Garlic (Allium sativum L.) is a clonally propagated bulbous crop and can be infected by several viruses under field conditions. A virus complex reduces garlic yield and deteriorates the quality of the produce. In the present study, we aimed to eliminate Onion yellow dwarf virus (OYDV), Garlic common latent virus (GCLV), Shallot latent virus (SLV), and Allexiviruses from the infected crop using combination of meristem culture, thermotherapy, and chemotherapy. In this study, seven different treatments, namely shoot meristem culture, thermotherapy direct culture, chemotherapy direct culture, chemotherapy + meristem culture, thermotherapy + meristem culture, thermotherapy + chemotherapy direct culture, and thermotherapy + chemotherapy + meristem culture (TCMC), were used. Multiplex polymerase chain reaction (PCR) was employed to detect virus elimination, which revealed the percentage of virus-free plants was between 65 and 100%, 55 and 100%, and 13 and 100% in the case of GCLV, SLV, and OYDV, respectively. The in vitro regeneration efficiency was between 66.06 and 98.98%. However, the elimination of Allexiviruses could not be achieved. TCMC was the most effective treatment for eliminating GCLV, SLV, and OYDV from garlic, with 66.06% plant regeneration efficiency. The viral titre of the Allexivirus under all the treatments was monitored using real-time PCR, and the lowest viral load was observed in the TCMC treatment. The present study is the first to report the complete removal of GCLV, SLV, and OYDV from Indian red garlic with the application of thermotherapy coupled with chemotherapy and shoot meristem culture.

8.
Antioxidants (Basel) ; 11(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36009266

RESUMEN

Shallots are a perennial plant from the Alliaceae family, classified with the common onion under the name of the Allium cepa Aggregatum group. The term shallot is also used for diploid and triploid viviparous onions, known as Allium × proliferum (Moench) Schrad and Allium × cornutum Clementi ex Vis., respectively. In this study, we compared the dry matter, pyruvic acid content, sugar content, flavonoid content, antioxidant capacity and mineral composition of 34 shallot accessions falling into three shallot species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum). Shallot accessions belonging to the A.× cornutum and A. × proliferum groups are characterized by high dry matter content (around 25%), of which a little less than 50% is formed of inulin-type sugars, polysaccharides, considered an excellent prebiotic with beneficial effects on human health. On the other hand, accessions belonging to the A. cepa Aggregatum group have lower dry matter content and, as a result, lower pungency (measured as pyruvic acid content), making them more suitable for fresh consumption by a broader range of consumers, but, at the same time, abundant in phenolic compounds, especially quercetin and isorhamnetin glycosides. We also observed a greater biodiversity among accessions within the A. cepa Aggregatum group in all the analyzed physico-chemical parameters compared to the other shallot groups. The investigated shallot accessions have an excellent in vitro antioxidant capacity, as well as excellent nutritional properties.

9.
Front Nutr ; 9: 903686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35983491

RESUMEN

Background: Shallot (Allium ascalonicum L.) is a traditional plant species used throughout the world both for culinary purposes and as a folk remedy. To date (i.e., April 2022), there is no report on the main pharmacological activities exerted by shallot preparations and/or extracts. Scope and Approach: The aim of this study was to comprehensively review the pharmacological activities exerted by shallot, with rigorous inclusion and exclusion criteria based on the scientific rigor of studies. Prisma guidelines were followed to perform the literature search. Key Findings and Conclusions: The literature search yielded 2,410 articles of which 116 passed the required rigorous criteria for inclusion in this review. The extracts exert a potent antioxidant activity both in vitro and in vivo, as well as a strong inhibitory capacity on various pathogens with relevant implications for public health. Moreover, shallot can be used as adjuvant therapy in cardiovascular diseases, diabetes, cancer prevention, and other non-communicable diseases associated with inflammatory and oxidative pathways. Future studies investigating the chemical composition of this species, as well as the molecular mechanisms involved in the empirically observed pharmacological actions are required.

10.
Plants (Basel) ; 11(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684272

RESUMEN

In Thai folklore wisdom, shallot (Allium ascalonicum L.) was applied as a traditional herbal medicine for hair growth promotion with no scientific evidence. Androgenetic alopecia (AGA) is a progressive hair loss caused by multiple factors, including androgen hormones, inflammation, and oxidative stress. Conventional medicines (finasteride, dutasteride, corticosteroids, and minoxidil) have been used with limited therapeutic efficacy and unpleasant side effects. In this study, we aimed to give the first estimation of bioactive compounds in shallot extract and evaluate the hair growth-promoting activities regarding anti-inflammatory and gene expression modulation involving androgen, Wnt/ß-catenin, sonic hedgehog, and angiogenesis pathways. The results reveal that phenolic compounds (quercetin, rosmarinic, and p-coumaric acids) are the major constituents of the methanolic shallot extract. Compared with the lipopolysaccharide-stimulated control group (2.68 ± 0.13 µM), nitric oxide production was remarkably diminished by shallot extract (0.55 ± 0.06 µM). Shallot extract improves hair growth promotion activity, as reflected by the downregulation of the androgen gene expression (SRD5A1 and SRD5A2) and the upregulation of the genes associated with Wnt/ß-catenin (CTNNB1), sonic hedgehog (SHH, SMO, and GIL1), and angiogenesis (VEGF) pathways. These findings disclose the new insights of shallot extract on hair growth promotions. Shallot extract could be further developed as nutraceutical, nutricosmetic, and cosmeceutical preparations for AGA treatment.

11.
Food Chem ; 390: 133221, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597087

RESUMEN

The study aimed to improve the properties of SA-CMC film by gluten (G) blends and bioactive compounds from onion waste extracts (OWEs) peel (OPE) and stalk (OSE). The applicability of film on the quality of peeled shallot onion during storage was also examined. Water barrier (0.62 g/msPa × 10-14) and tensile strength (11.50 MPa) of G/SA-CMC film improved more than SA-CMC film (1.55 g/msPa × 10-13 and 7.05 MPa). OPE and OSE increase the total phenolic content (43.86 and 38.35 mgGAE/g) and radical scavenging activity (88.74 and 68.30 %) of G/SA-CMC film than control (20.33 mgGAE/g and 39.20 %). Microbial load (logCFU/g) in terms of total bacterial count, yeast and mold count of shallot onion packed in OPE (5.34 and 5.21) and OSE (4.26 and 4.21) film was reduced than control (6.03 and 4.68). Thus, the G/SA-CMC/OWEs film had improved properties than SA-CMC film and can be used to store peeled onion at 4℃ for 21 days.


Asunto(s)
Embalaje de Alimentos , Chalotes , Alginatos , Carboximetilcelulosa de Sodio , Celulosa , Glútenes , Cebollas , Extractos Vegetales
12.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35630949

RESUMEN

The chemical content of plant excerpts can be efficiently employed to reduce the metal ions to nanoparticles in the one-pot green production method. Here, green production of silver nanoparticles (AC-AgNPs) is performed by means of Allium cepa var. Aggregatum (shallot) extract as a stabilizer and reducer. The shape, size, and morphology of resultant AC-AgNPs are examined by optical spectroscopy analysis such as UV for nucleation and coalescence processes of the AC-AgNPs. Through FTIR functional group is determined and through DLS size is defined, it was confirmed that metallic AgNPs were successfully synthesized through the green synthesis route, and these results agreed well with the results obtained in the XRD pattern along with TEM spectroscopy, where the TEM images confirm the formation of sphere-like nanostructures along with SAED analysis. The chemical characterization is performed with XPS; the obtained molecular species in the materials are determined from the energy profile. Antioxidant activity of AC-AgNPs versus DPPH substrate is carried out. Antibacterial activity is well established against Gram-negative and Gram-positive organisms. Cell viability is accomplished, followed by an MTT assay, and a cytotoxicity assay of AC-AgNPs on MCF-7 cell lines is also carried out. Highlights: (1). This study highlights the eco-friendly synthesis of silver nanoparticles from Allium cepa var. Aggregatum Natural Extract. (2). The synthesized AC-AgNPs were characterized by UV-VIS, FT-IR, XRD, TEM, and XPS. (3). The synthesized nanoparticles were well dispersed in nature and the size range of 35 ± 8 nm. (4). The anti-candidal activity of biosynthesized silver nanoparticles was evaluated against the following Gram-Negative organisms: Escherichia coli (E. coli), and the following Gram-positive organisms: Staphylococcus aureus strains. The biosynthesized AC-AgNPs showed enhanced antiseptic features anti both Gram-positive and negative organisms. (5). Besides, the in vitro cytotoxic outcomes of AC-AgNPs were assessed versus MCF-7 cancerous cells, and the reduction in the feasibility of cancer cells was established via MTT assay, which suggests potential biomedical applications.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35286242

RESUMEN

This study involved analysis and method validation of spirotetramat applied to two phenotypically different Korean vegetables (e.g. Korean cabbage and shallots) to determine the safe pre-harvest residue limit (PHRL) and comparative dissipation patterns. Two steps of the investigation involved greenhouse monitoring during crop cultivation followed by LC-MS/MS analysis. Commercial spirotetramat was sprayed twice with seven-day intervals according to the spray schedule (0, 3, 7, 10, 14, and 21 days before harvest) at the dose recommended by the Ministry of Food and Drug Safety (MFDS), Korea. During the validation of the analytical method, good linearity, specificity, and acceptable recoveries (82%-114% for Korean cabbage and 82%-111% for shallot) were established for spirotetramat and its four metabolites. The calculated biological half-life derived from the first-order reaction (t1/2) of spirotetramat was 4.8 days for Korean cabbage and 4.0 days for shallot, respectively. The safe PHRL for Korean cabbage was suggested at 7 days, due to permissible spirotetramat concentration in terms of an acceptable MRL. The findings of the study will be used as the analytical reference point for developing spirotetramat safety guidelines for use in the vegetables investigated.


Asunto(s)
Brassica , Insecticidas , Residuos de Plaguicidas , Compuestos Aza , Brassica/química , Cromatografía Liquida/métodos , Semivida , Insecticidas/análisis , Residuos de Plaguicidas/análisis , Compuestos de Espiro , Espectrometría de Masas en Tándem/métodos , Verduras/metabolismo
14.
Int J Biol Macromol ; 188: 790-799, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34384801

RESUMEN

Owing to growing concerns about making pollution-free sustainable environment by reducing the dumping of agricultural waste and convert it into valuable product is a key to carry out the present study. The ultimate goal of this study is to convert shallot onion wastes (SOWs) into active packaging and evaluating the anti-browning effect due to the SOWs holding rich polyphenols and antioxidants. The active packaging film was fabricated by using sodium alginate (SA) and carboxymethyl cellulose (CMC) along with shallot onion waste extract (SOWEs) such as peel and stalk at 0.2% and 0.5% concentration. The film made with SA/CMC/SOWEs had good physical, mechanical, optical and barrier property, higher phenolic and antioxidant activity compared to control. In addition, the effect of SA/CMC/SOWEs film packaging on anti-browning and quality of fresh-cut apple and potato stored at 4 °C was studied. The results show the SA/CMC/SOWEs film had better effect on controlling browning index in fresh-cut apple and potato over the storage of 12 days and 5 days. This study concludes that the SA/CMC film developed with shallot stalk extract can be used for wrapping of fresh-cut fruits and vegetables. It also prevents browning and maintains the overall quality than control and shallot peel incorporated film.


Asunto(s)
Alginatos/química , Carboximetilcelulosa de Sodio/química , Embalaje de Alimentos , Chalotes/química , Residuos/análisis , Frutas , Humedad , Permeabilidad , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Vapor , Temperatura , Verduras
15.
Environ Sci Pollut Res Int ; 28(46): 65676-65686, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34322815

RESUMEN

Assessment of environmental consequences of agri-food products during their life cycle is currently identified as the most important and efficient way to investigate agricultural systems. In addition to the environmental impacts, energy and economic issues are considered major issues in the life cycle of products. The present study aimed to investigate and assess the energy flow, environmental, and economic dimensions during shallot production in farms of Iran. Given the limited number of shallot farmers, the required data were collected from 22 shallot farms through the census method in the Shahrekord region. Based on the results obtained from the energy analysis, energy input and output and energy ratio (ER) were obtained as 107,145 and 36,243 MJ ha-1 and 0.4, respectively. Also, electricity was identified as major contributor to energy consumption with the contribution of 74%. Results related to the economic analysis of shallot production revealed that the values of total production, economic productivity, and benefit-cost ratio (BCR) are 15,672 US$ ha-1, 10.89 kg US$-1, and 8.45, respectively. Based on the life cycle assessment results, the contribution of input consumption in the farms and input production to total environmental impacts were determined as 55 and 45%, respectively. Also, normalization of results showed that the marine ecotoxicity (ME) and global warming potential (GWP) impact categories were the main environmental impacts during shallot production. ME and GWP impacts can be attributed to the indirect emissions of electricity and direct emissions of inputs in the farm, respectively.


Asunto(s)
Fertilizantes , Chalotes , Agricultura , Calentamiento Global , Irán
16.
J Basic Clin Physiol Pharmacol ; 32(4): 429-437, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34214369

RESUMEN

OBJECTIVES: Medicinal plants are a source of many compounds that are useful in the pharmaceutical field for novel drug development. Polyphenols and the flavonoid group in plants are known to have several activities, such as relieving cardio vascular disease (CVD). The outer skin of the shallot which is disposed of as waste is known to have an antiplatelet activity which was tested in vitro assay. To date, there is no study reported on the ADMET profile and physicochemical properties of the active component of the shallot skins. METHODS: The extraction of shallot skins was conducted by ultrasonic irradiation using ethanol. The phytochemical screenings were carried out by TLC and color reaction. The profiling of its active ingredient was presented by GC-MS, HPLC and spectrophotometry UV-vis. Whereas their physicochemical properties were analyzed by ChemDraw 17.00 program and the ADMET predictions were studied using pkCSM online tool. The MVD program was operated in the docking study on protein P2Y12 (PDB ID 4PXZ). RESULTS: The extract showed the presence of polyphenol, flavonoids, quercetin, natalensine-3,5-dinitrobenzoate; bis[2-(2-fluorophenyl)-6-fluoroquinolin-4-yl]amine, benzo[a]heptalene, N-(trifluoroacetyl) methyl-N-deacethyl-colchicine. The ADMET prediction data displayed that the compounds in the extract have good absorption so that they can be used in the oral and transdermal routes. Some components in the extract have lower MDS than clopidogrel. CONCLUSIONS: The ultrasonicated shallot skin extract can be used as additional resources of the active pharmaceutical ingredients and to have the potency to be developed as an oral or transdermal preparation.


Asunto(s)
Chalotes , Flavonoides/farmacología , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Antagonistas del Receptor Purinérgico P2Y
17.
BMC Genomics ; 22(1): 481, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174821

RESUMEN

BACKGROUND: Genomic information for Allium cepa L. is limited as it is heterozygous and its genome is very large. To elucidate potential SNP markers obtained by NGS, we used a complete set of A. fistulosum L.-A. cepa monosomic addition lines (MALs) and doubled haploids (DHs). These were the parental lines of an A. cepa mapping population for transcriptome-based SNP genotyping. RESULTS: We mapped the transcriptome sequence reads from a series of A. fistulosum-A. cepa MALs onto the unigene sequence of the doubled haploid shallot A. cepa Aggregatum group (DHA) and compared the MAL genotype call for parental bunching onion and shallot transcriptome mapping data. We identified SNP sites with at least four reads on 25,462 unigenes. They were anchored on eight A. cepa chromosomes. A single SNP site was identified on 3,278 unigenes and multiple SNPs were identified on 22,184 unigenes. The chromosome marker information was made public via the web database Allium TDB ( http://alliumtdb.kazusa.or.jp/ ). To apply transcriptome based genotyping approach for genetic mapping, we gathered RNA sequence data from 96 lines of a DHA × doubled haploid bulb onion A. cepa common onion group (DHC) mapping population. After selecting co-dominant SNP sites, 16,872 SNPs were identified in 5,339 unigenes. Of these, at least two SNPs with identical genotypes were found in 1,435 unigenes. We developed a linkage map using genotype information from these unigenes. All unigene markers mapped onto the eight chromosomes and graphical genotyping was conducted based on the unigene order information. Another 2,963 unigenes were allocated onto the eight chromosomes. To confirm the accuracy of this transcriptome-based genetic linkage map, conventional PCR-based markers were used for linkage analysis. All SNP - and PCR-based markers were mapped onto the expected linkage groups and no inconsistency was found among these chromosomal locations. CONCLUSIONS: Effective transcriptome analysis with unique Allium resources successfully associated numerous chromosome markers with unigene information and a high-density A. cepa linkage map. The information on these unigene markers is valuable in genome sequencing and useful trait detection in Allium.


Asunto(s)
Allium , Cebollas , Allium/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Cebollas/genética , Polimorfismo de Nucleótido Simple , Transcriptoma
18.
Food Chem ; 345: 128748, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-33340890

RESUMEN

Flavor is a key attribute of fried oil that shows a critical correlation with temperature. Therefore, selecting the appropriate temperature is important in preparing fried shallot oil (FSO). Volatile compounds from five different FSOs were identified and comparatively studied using gas chromatography-mass spectrometry (GC-MS) coupled with multivariate data analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). GC-MS results identified a total of 93 volatiles, among which aldehydes, alcohols, pyrazines, and sulfur-containing compounds were the major compounds. Eighteen compounds had odor active values (OAV) >1. Among the compounds, hexanal, (E)-2-heptenal, (E)-2-octenal, dipropyl disulfide, 2-ethyl-3,5-dimethylpyrazine, and 1-octen-3-ol were important to the overall aroma profile of FSOs. In the PCA model, all the detected FSOs were divided into three clusters, which were assigned as cluster A (FSO5), B (FSO4), and C (the rest FSOs). Multivariate data analyses revealed that nonanal, 2-ethyl-5-methylpyrazine, (E,E)-2,4-decadienal, (E)-2-heptenal, and hexanal contributed positively to the classification of different FSOs. GC-MS coupled with multivariate data analysis could be used as a convenient and efficient analytical method to classify raw materials.


Asunto(s)
Culinaria , Análisis de los Alimentos/métodos , Cromatografía de Gases y Espectrometría de Masas , Aceites de Plantas/química , Chalotes/química , Temperatura , Compuestos Orgánicos Volátiles/análisis , Análisis Multivariante , Odorantes/análisis , Gusto
19.
J Food Sci Technol ; 57(10): 3601-3610, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32903912

RESUMEN

Shallot flour was prepared and sieved into three different particle sizes of < 180 µm (sample A), 180 µm (sample B) and 250 µm (sample C). Effect of concentration [0.5%, 1.0%, 1.5% and 2.0% (w/w)], temperature (20, 30, 40, 60 and 80 °C), pH (4, 7 and 10) and freezing (- 20 °C) on rheological properties of shallot flour were studied at increasing shear of 0.1-100 s-1. Effect of dynamic change in temperature (15-95 °C) was also measured at constant shear rate of 50 s-1. Power law (Eq. 2) model with coefficient of determination (R2) above 0.90, well described the rheological behavior of the shallot flour as a shear thinning, non-Newtonian fluid at different concentration, temperature and pH. All the samples had n values below 1 and increase in viscosity or consistency index (k) value with increase in concentration of the sample was observed, while inverse relation was observed when temperature was increased. All samples showed increase in k value when the pH of the dispersion was varied from acidic to alkaline condition. Viscosity of samples were found unaffected even after freezing in freeze-thaw cycle. These data show sample A to be most suitable for their application as thickener, having highest k value. The obtained research provides information for utilization of shallot as a thickener in various food industries.

20.
Pak J Biol Sci ; 23(9): 1113-1121, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32981242

RESUMEN

BACKGROUND AND OBJECTIVES: Shallot is a vegetable crop with high economic value, but its productivity is still relatively low due to various limitations. One of the most hampering factors is moler disease and purple blotch disease caused by Fusarium sp. and Alternaria porri, respectively. Numerous efforts have been made to control these diseases either using chemical fungicides or through improvement of resistant cultivar. This study aimed to determine moler and purple disease suppression and improvement of plant growth by Bacillus as Plant Growth Promoting Rhizobacteria (PGPR) on shallot. MATERIALS AND METHODS: Molecular identification of Bacillus was performed by partial gyrB gene sequencing using universal gyrB-F/gyrB-R primers. Field observation and experiments were performed using completely randomized factorial block design single factor with 3 blocks for replication. RESULTS: The partial gyrB gene sequences showed high similarity between Bacillus isolate B-27 and Bacillus velezensis. The application of Bacillus isolate B-27 to shallots was shown to reduce the intensity of moler and purple blotch diseases by 67%. On top of that, Bacillus isolate B-27 increased the plant height up to 27.12 cm, the number of leaves up to 23 blades, tillers up to 8 bulbs and the tuber weight during harvest time up to 33.64 kg. CONCLUSION: Molecular identification based on partial gyrB gene sequence analysis suggested that Bacillus isolate B-27 has close relationship with Bacillus velezensis. Besides, the application of Bacillus isolate B-27 on shallot could reduce the disease intensity and increase height, number of tillers and plant yield significantly.


Asunto(s)
Bacillus/metabolismo , Girasa de ADN/genética , Resistencia a la Enfermedad/genética , Chalotes/crecimiento & desarrollo , Alternaria , Fusarium , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA