Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 266: 122361, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39244864

RESUMEN

This paper examines the acid leaching efficiencies of Fe and P from vivianite slurry (VS, Fe3(PO4)2·8H2O), which is magnetically separated from anaerobic digested sludge, and elaborates on Fe and P reuse routes. The characteristics and dissolution behavior of raw VS in hydrochloric, sulfuric, phosphoric, oxalic, and citric acids are investigated. Results reveal that the primary impurities in VS are organic matter, other phosphate compounds, and Mg present in the vivianite crystal structure. Hydrochloric and sulfuric acids could effectively extract P (90%) from VS at an optimal hydrogen-to-phosphorus (H⁺/P) ratio of 2.5, compared with sewage sludge ash (SSA) that normally needs an H⁺/P ratio greater than 3. Hence, VS can be employed as an alternative P resource following a similar recovery route used with SSA. However, in comparison to SSA, VS use can decrease acid consumption in P extraction and the requirement for the extensive purification of cationic impurities. Furthermore, oxalic acid effectively facilitates the separation of P and Fe in VS by precipitating Fe as insoluble ferrous oxalate in acidic conditions, leading to a high Fe recovery rate of 95%. The recovery and reuse of Fe through the oxalic acid route further improves the feasibility of VS as an alternate resource.

2.
J Environ Manage ; 366: 121878, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018845

RESUMEN

Traditional activators such as sodium hydroxide and sodium silicate are commonly used in the preparation of alkali-activated materials; however, their significant environmental impact, high cost, and operational risks limit their sustainable use in treating solid waste. This study explores the innovative use of carbide slag (CS) and sodium metasilicate (NS) as alternative activators in the production of sewage sludge ash-based alkali-activated materials (SSAM) with the aim of reducing the carbon footprint of the preparation process. The results demonstrate that CS effectively activates the sewage sludge ash, enhancing the compressive strength of the SSAM to 40 MPa after curing for 28 d. When used in conjunction with NS, it synergistically improves the mechanical properties. Furthermore, the microstructure and phase composition of the SSAM are characterized. Increasing the quantities of CS and NS accelerates the dissolution of the precursor materials, promoting the formation of a higher quantity of hydration products. This significantly reduces the number of voids and defects within the samples, further enhancing the densification of the microstructure. Environmental assessments reveal that CS and NS offer substantial sustainability benefits, confirming the feasibility of activating SSAM using these materials. This approach provides a less energy-intensive and more environmentally friendly alternative to conventional activation methods and presents an effective strategy for managing large volumes of sewage sludge ash and CS.


Asunto(s)
Aguas del Alcantarillado , Silicatos , Silicatos/química , Aguas del Alcantarillado/química , Álcalis/química , Residuos Sólidos
3.
Environ Technol ; : 1-9, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920111

RESUMEN

Phosphorus (P) recovery from sewage sludge ash (SSA) is considered to be an effective method for P recovery. In this work, P extraction and the removal of heavy metals were realized by electrodialysis. Low-cost, easily available, and environmentally friendly plant extracts were applied as suspension to reduce the inevitable secondary pollution. And the feasibility of using plant extracts was analysed by comparing with using deionized water (DI) and oxalic acid (OA) solution. When SSA was suspended in different solutions (DI, OA, and three plant extracts - Hovenia acerba (HA), Saponin (SA) and Portulaca oleracea (PO)), the effects of reaction time and plant extract concentration on P extraction and heavy metal separation of SSA under ED treatment were compared. After the process of electrodialysis, compared to other experimental groups, electrodialysis with plant extracts obtained more P released from SSA, but less P migrated to the anode chamber. However, when SSA was suspended in PO at a concentration of 80 g/L, the proportion of P transferred from SSA to the anode chamber can still reached 37.86%. In addition, the use of plant extracts as suspension had a positive effect on the removal of heavy metals, but its effect was lower than that of the oxalic acid-treated experimental group. The results indicated that the use of plant extracts for wet-chemical extraction combined with electrodialysis promoted the removal of heavy metals and the extraction of P from SSA, which is a feasible option.

4.
Waste Manag ; 183: 245-252, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38772135

RESUMEN

The research was aimed at providing new knowledge in the field of chemical characteristics of solid waste generated in the process of combustion of sewage sludge in fluidized bed furnaces. The research material consisted of disposed fluidized beds (DFB), sewage sludge ash (SSA) and air pollution control residues (APC) from three Polish installations for the thermal treatment of sewage sludge. Natural radionuclides as well as anthropogenic isotope 137Cs were determined in the tested materials and the migration of a wide spectrum of trace elements to various waste fractions generated in the process of sewage sludge combustion was examined. It was observed that both radioisotopes and most of the trace elements determined accumulate in SSA and DFB, while the APC fraction contains a much smaller amount of them. The exceptions are mercury and selenium, whose volatile compounds migrate to the exhaust gas dedusting system and accumulate in the APC fraction (up to 40 mg/kg and 13 mg/kg, respectively). A potential threat from the 226Ra isotope in SSA is identified in the context of the management of this waste in the production of building materials because the typical activity of 226Ra in SSA collected from areas with very low Ra content in natural environment exceeds 1.5-6 times the activity of this isotope in conventional cement mixtures. When managing SSA and DFB, special attention should be paid to the content of metalloids such as As, B and Se, due to the high content of mobile forms of these elements in the mentioned materials.


Asunto(s)
Incineración , Aguas del Alcantarillado , Residuos Sólidos , Oligoelementos , Aguas del Alcantarillado/química , Oligoelementos/análisis , Incineración/métodos , Residuos Sólidos/análisis , Polonia , Radioisótopos/análisis , Eliminación de Residuos/métodos , Radioisótopos de Cesio/análisis
5.
Toxics ; 12(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38787123

RESUMEN

In the pursuit of environmentally and economically sustainable sewage sludge ash (SSA) management methods, researchers often employ laboratory-made SSA (L-SSA) as a substitute for industrial-made SSA (I-SSA) produced in fluidized bed furnaces. To check whether L-SSA is a material that imitates I-SSA well, the fractionation of metals whose presence is a significant problem during SSA management was performed. In addition, the grain distribution, specific surface area, and textural properties of the tested materials were examined. Differences in total Pb and Hg content and mobility of Cu, Ni, Mn, and Zn were observed between I-SSA and L-SSA. Larger particle sizes of L-SSA compared to I-SSA were confirmed, while comparable textural properties and specific surface area of both types of materials were maintained. Based on the results, it was concluded that L-SSA is chemically different compared to I-SSA, and that L-SSA should not be used as a reference in research focused on the design of SSA management methods. Moreover, fractionation of metals was performed in disposed fluidized beds (FBs), which are diverted to non-hazardous waste landfills without prior analysis. It has been proven that studied metals are present in FBs as abundantly as in SSA, while Cu, Mn, and Ni may show higher mobility than in I-SSA.

6.
Waste Manag ; 174: 229-239, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070442

RESUMEN

Disposal of waste glass and incinerated sewage sludge ash (ISSA) in landfills is a waste of resources and poses significant environmental risks. This work aims to recycle waste glass and ISSA together to form value-added glass-ceramics. The physical and mechanical properties, leaching behaviour, and microstructure of the glass-ceramics produced with different proportions of waste glass powder (WGP) and ISSA were investigated. Thermodynamic calculations were performed to predict the formation of crystalline phases and the phase transformation involved. The results showed the potential of WGP and ISSA as raw materials in glass-ceramics production. WGP effectively densified the microstructure of the glass-ceramics by forming a viscous phase. As WGP content increased, the total porosity of glass-ceramics decreased whereas the density increased, accompanied by the formed anorthite transforming into wollastonite. The incorporation of WGP densified and refined the pore structure of the glass-ceramics, thereby improving the mechanical properties and reducing the water absorption. The glass-ceramics produced with a 50:50 blend of WGP and ISSA exhibited the highest compressive strength of 43.7 MPa and the lowest water absorption of 0.3 %. All fabricated glass-ceramics exhibited innocuous heavy metal leaching. The co-sintering of ISSA and WGP can produce additive-free glass-ceramics, characterized by reduced energy consumption and notable heavy metal immobilization capacity. These materials hold promise for utilization in construction as building materials.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Reciclaje/métodos , Vidrio , Cerámica , Agua , Ceniza del Carbón , Incineración
7.
Materials (Basel) ; 16(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37959544

RESUMEN

This review provides an overview of methods to extract valuable resources from the ash fractions of sewage sludge, municipal solid waste, and wood biomass combustion. The resources addressed here include critical raw materials, such as phosphorus, base and precious metals, and rare earth elements for which it is increasingly important to tap into secondary sources in addition to the mining of primary raw materials. The extraction technologies prioritized in this review are based on recycled acids or excess renewable energy to achieve an optimum environmental profile for the extracted resources and provide benefits in the form of local industrial symbioses. The extraction methods cover all scarce and valuable chemical elements contained in the ashes above certain concentration limits. Another important part of this review is defining potential applications for the mineral residues remaining after extraction. Therefore, the aim of this review is to combine the knowledge of resource extraction technology from ashes with possible applications of mineral residues in construction and related sectors to fully close material cycle loops.

8.
Environ Sci Pollut Res Int ; 30(55): 117881-117891, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872344

RESUMEN

Two-compartment electrodialytic extraction (2C-ED) is a one-step process for the simultaneous phosphorous extraction and separation of heavy metals from sewage sludge ash (SSA). The process is driven by an applied electric DC field, which can be supplied from renewable sources. The proof-of-concept of the method was conducted in small laboratory cells; however, upscaling to a continuous 2C-ED process, which additionally can treat SSA suspensions at a low liquid-to-solid (L:S) ratio, requires a new design. This paper presents such a new design. In principle, ED consists of two compartments separated by a cation exchange membrane. One compartment contains a suspension of SSA in water and the anode. A cathode is placed in the other compartment. Electrolysis at the anode acidifies the suspension causing the dissolution of phosphorous and heavy metals. The heavy metals are separated from the suspension by electromigration into the catholyte, whereas the dissolved phosphorous remains in the dispersion solution. In the new design, the SSA was suspended in a tube-shaped reactor with the cation exchange membrane covering the outside. The reactor was placed in a container with the catholyte. Periodically turning off the reactor kept SSA in suspension even at a low L:S ratio without corners and pockets where the SSA otherwise tends to settle. Five 2C-ED experiments were conducted with 1.5 to 3 kg SSA at varying currents and durations. Up to 89% P was extracted. The extracted P was concentrated in the dispersion solution of the SSA suspension, where the obtained P-related concentrations of heavy metals were far below the limiting values for spreading on agricultural land. The experiments underlined that treating the SSA in a suspension with a low L:S ratio is advantageous. A comparison to previous laboratory experiments in small cells treating 50 g SSA shows a significantly more efficient use of the applied current in the new reactor setup. Thus, the new reactor design for 2C-ED fulfilled the set criteria for the operation and did additionally result in a higher efficiency than the laboratory setups, i.e., the design can be the first step towards an upscaling.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Fósforo , Cationes
9.
J Environ Manage ; 344: 118691, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536239

RESUMEN

Incineration is a promising disposal method for sewage sludge (SS), enriching more than 90% of phosphorus (P) in the influent into the powdered product, sewage sludge ash (SSA), which is convenient for further P recovery. Due to insufficient bioavailable P and enriched heavy metals (HMs) in SSA, it is limited to be used directly as fertilizer. Hence, this paper provides an overview of P transformation in SS incineration, characterization of SSA components, and wet-chemical and thermochemical processes for P recovery with a comprehensive technical, economic, and environmental assessment. P extraction and purification is an important technical step to achieve P recovery from SSA, where the key to all technologies is how to achieve efficient separation of P and HMs at a low economic and environmental cost. It can be clear seen from the review that the economics of P recovery from SSA are often weak due to many factors. For example, the cost of wet-chemical methods is approximately 5∼6 €/kg P, while the cost of recovering P by thermochemical methods is about 2∼3 €/kg P, which is slightly higher than the current P fertilizer (1 €/kg P). So, for now, legislation is significant for promoting P recovery from SSA. In this regard, the relevant experience in Europe is worth learning from countries that have not yet carried out P recovery from SSA, and to develop appropriate policies and legislation according to their own national conditions.


Asunto(s)
Metales Pesados , Fósforo , Fósforo/análisis , Aguas del Alcantarillado/química , Fertilizantes , Incineración , Europa (Continente) , Metales Pesados/química
10.
Materials (Basel) ; 16(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37297270

RESUMEN

The activity of sewage sludge ash (SSA) is not high; ground granulated blast slag (GGBS) has a high calcium oxide content that can accelerate polymerization rates and exhibit better mechanical performance. In order to improve the engineering application of SSA-GGBS geopolymer, it is necessary to conduct a comprehensive evaluation of its performance and benefits. In this study, the fresh properties, mechanical performance and benefits of geopolymer mortar with different SSA/GGBS, modulus and Na2O contents were studied. Taking the economic and environmental benefits, working performance and mechanical performance of mortar as evaluation indexes, the entropy weight TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) comprehensive evaluation method is used to evaluate the geopolymer mortar with different proportions. The results show that as SSA/GGBS increases, the workability of mortar decreases, the setting time first increases and then decreases, and the compressive strength and flexural strength decrease. By appropriately increasing the modulus, the workability of the mortar decreases and more silicates are introduced, resulting in increased strength in the later stage. By appropriately increasing the Na2O content, the volcanic ash activity of SSA and GGBS is better stimulated, the polymerization reaction is accelerated, and the early strength increases. The highest Ic (integrated cost index, Ctfc28) of geopolymer mortar is 33.95 CNY/m3/MPa, and the lowest is 16.21 CNY/m3/MPa, which is at least 41.57% higher than that of ordinary Portland cement (OPC). The minimum Ie (embodied CO2 index, Ecfc28) is 6.24 kg/m3/MPa, rising up to 14.15 kg/m3/MPa, which is at least 21.39% lower than that of OPC. The optimal mix ratio is a water-cement ratio of 0.4, a cement-sand ratio of 1.0, SSA/GGBS of 2/8, a modulus content of 1.4, and an Na2O content of 10%.

11.
Water Res ; 238: 120024, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37156102

RESUMEN

Phosphorus recovery from incinerated sewage sludge ash (ISSA) is important but hindered by low selectivity. Here, a novel strategy of acid leaching followed by thermally induced precipitation was proposed for the efficient and selective recovery of FePO4 from ISSA samples. A high phosphorus leaching efficiency of ∼ 99.6% was achieved with 0.2 mol/L H2SO4 and liquid to solid (L/S) ratio of 50 mL/g. Without removing various co-existing ions (Al3+, Ca2+, SO42-, etc.), high-purity FePO4 of ∼ 92.9% could be facilely produced from this highly acidic H2SO4 leachate (pH = 1.2) by simple addition of Fe(III) at a molar ratio of 1:1 to the phosphorus and reacted at 80 °C for thermally induced precipitation. The remained acid leachate could be further reused for five times to continue leaching phosphorus from the ISSA samples and produce the FePO4 precipitates with a high phosphorus recovery efficiency of 81.1 ± 1.8%. The selective recovery of FePO4 from the acid leachate was demonstrated more thermodynamically favorable compared to other precipitates at this acidic pH of 1.2, and elevated temperature of 80 °C towards thermally induced precipitation. The estimated cost of this strategy was ∼$26.9/kg-P and lower than that of other existing technologies. The recovered FePO4 precipitates could be used as a phosphate fertilizer to promote the growth of ryegrass, and also as a precursor to synthesize high-value LiFePO4 battery material, demonstrating the high-value application potential of the phosphorus from the ISSA.


Asunto(s)
Compuestos Férricos , Aguas del Alcantarillado , Incineración , Fósforo , Fosfatos , Hierro
12.
Waste Manag ; 164: 57-65, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37031513

RESUMEN

Phosphorus (P) is an integral mineral nutrient for the growth of plants and animals. As the increasing population worldwide, the demand for P resources keeps increasing. Therefore, it is necessary to recover P from secondary resources. Unlike conventional P recovery processes, this work focused on the recovery of P from incinerated sewage sludge ash (ISSA) using electrodialysis as the main technology coupled with plant extractants. In this study, Amaranthus and hydrolyzed polymaleic anhydride (HPMA) were used as P extractants, investigating the effects of HPMA concentration and pH of the compound agent on the migration of P and heavy metals from ISSA. The results showed that the concentration of HPMA and pH of the compound agent had a significant influence on the mobility of P and heavy metals. Meanwhile, the impacts of eggshell additions and voltage on the recovery efficiency of P was also studied by using waste eggshells as calcium sources. We found that when eggshells were added at 10 g/L and the voltage was 10 V, the recovery efficiency of P reached 96.05%. Moreover, XRD patterns revealed that the mineral phase of recovered P-containing products was predominantly hydroxyapatite, which had good environmental benefits. Generally, the favorable results have been achieved in the recovery efficiency of P and has practical implications for P recovery from ISSA.


Asunto(s)
Metales Pesados , Fósforo , Animales , Fósforo/química , Aguas del Alcantarillado/química , Incineración
13.
J Environ Manage ; 333: 117447, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764179

RESUMEN

BACKGROUND: Sustainability concerns as well as recent increases in fertilizer prices exacerbates the need to optimise the use of biowastes as fertilizers. For this reason, we investigated how different pretreatments affect the P dynamics when biofertilizers are placed in the soil. METHODS: Sewage sludge (SS), sewage sludge ash (SS-ash), meat and bone meal (MBM), and the solid fraction of biogas digestate (BGF) were pretreated with H2SO4, NaOH, and Ca(OH)2 and incubated for 2 and 12 days, respectively, in a one-dimensional reaction system for detailed studies of the interactions in the biomaterial-soil interface and the soil adjacent to the placement zone. RESULTS: Our results showed that acidification and treatment with NaOH increased the P solubility of the biomaterials. The P loss from the biomaterial layer to the soil was correlated with water-extractable P in the biomaterials (0.659) and water-extractable P in the soil (0.809). Acidification significantly increased the total amount of P depleted from the biomaterial to the soil whereas NaOH pre-treatment did not. However, for NaOH-treated SS and SS-ash, the apparent recoveries were significantly higher compared to the acidification due to a decrease in soil P sorption capacity as the soil pH increased due to residual alkalinity in the biomaterials. CONCLUSIONS: Acidification showed promising results by increasing the P solubility of all the biomaterials, and the alkalinization of SS and SS-ash with NaOH by increasing the apparent recovery in the soil. However, further studies are needed to assess the effects of these treatments on plant growth and P uptake.


Asunto(s)
Aguas del Alcantarillado , Suelo , Solubilidad , Ceniza del Carbón , Hidróxido de Sodio , Concentración de Iones de Hidrógeno , Fertilizantes/análisis
14.
J Environ Manage ; 326(Pt A): 116690, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372035

RESUMEN

In this research, an economical and eco-friendly ultra-high performance concrete (UHPC) with compressive strength of more than 120 MPa was prepared with the dosage of sewage sludge ash (SSA) at 8 wt%. The results indicate that the addition of SSA has an adverse influence on the workability of UHPC samples due to its special morphology. Furthermore, the microstructure and phase assemblage of SSA-based UHPC were determined and the results show that SSA inhibits the early hydration of cement clinker, while promotes the precipitation of additional hydration products at later curing ages due to its pozzolanic reaction. The pore structure analysis of SSA-based UHPC determined by mercury intrusion porosimetry indicates that the addition of SSA increases the cumulative pore volume, while decreases the large pore volume of UHPC. Economic and environmental analysis indicates that using SSA-based UHPC greatly reduces the unit cost and the impacts on the environment.


Asunto(s)
Materiales de Construcción , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Materiales de Construcción/análisis , Fuerza Compresiva
15.
Environ Sci Pollut Res Int ; 30(5): 13067-13078, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36123558

RESUMEN

A sewage sludge incineration ash contains large amounts of phosphorus, which are considered as a novel anthropogenic waste-based substitute for phosphorus natural resources. Phosphorus is accumulated at most in phosphate minerals of whitlockite structure, that contain Fe, Ca, and Mg and in the matrix composed of Si, Al, Fe, Ca, P, Mg, K, Na in various proportions. The goal of this study was to estimate phosphorus recovery potential. A four-stage sequential extraction, following the modified Golterman procedure, was applied. Separation of four independent fractions enabled to understand better the manner of phosphorus occurrence in the studied ash. The results of the extraction indicated the greatest release of phosphorus combined with organic matter using sulfuric acid. The release was on average at the level of 64%. The chelating Na-EDTA compound indicated lower ability to extract phosphorus (at the level of 35%), and the highest ability to extract heavy metals and potentially toxic elements (As, Zn, Mo). The sequential extraction led to the total recovery of phosphorus of around 40-60.


Asunto(s)
Incineración , Fósforo , Fósforo/química , Aguas del Alcantarillado/química , Fosfatos , Minerales
16.
Sci Total Environ ; 864: 161116, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566852

RESUMEN

In this study, the hydration mechanism and environmental impacts of blended cements with the co-combustion ash of rice husk and sewage sludge (CCA) were investigated and compared to those of blended cements with sewage sludge ash (SSA). CCA possesses lower phosphate contents than SSA, leading to lower inhibition effects on early hydration of cement clinker. Moreover, the pozzolanic activity of CCA is higher than that of SSA. Thus, more hydration products from the pozzolanic reaction of CCA are generated in CCA-based blended cements. Compared to the matrix of SSA-based blended cements, that of their CCA-based counterpart is filled with more hydration products, which promotes porosity refinement and strength development of CCA-based blended cements at later ages. CCA-based blended cements exhibit greater environmental benefits than SSA-based blended cements because fossil consumption and toxic substance emissions during the co-combustion of rice husk and sewage sludge is lower than that during the mono-combustion of sewage sludge.


Asunto(s)
Oryza , Aguas del Alcantarillado , Ambiente , Ceniza del Carbón
17.
Waste Manag ; 157: 25-35, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516581

RESUMEN

Fungal extraction is a promising approach for reclaiming phosphorus (P) from sewage sludge ash (SSA). However, this approach faces notable technical and economic challenges, including an unknown P speciation evolution and the addition of expensive chemical organic carbon. In this study, the use of an organic-rich effluent produced in sludge dewatering as nutrient source is proposed to initiate the fungal extraction of SSA-borne P with Aspergillus niger. The changes in P speciation in the ash during fungal treatment was analyzed by combined sequential extraction, solid-state 31P nuclear magnetic resonance, and P X-ray absorption near edge spectroscopy. Results showed that after 5 days of fungal treatment using sludge-derived organics, 85 % of P was leached from SSA. Dominantly, this considerable release of P resulted from the dissolution of Ca3(PO4)2, AlPO4, FePO4, and Mg3(PO4)2 in the ash, and their individual contribution rates to P released accounted for 28.0 %, 24.3 %, 20.6 %, and 18.8 %, respectively. After removal of metal cations (e.g., Mg2+, Al3+, Fe3+, and heavy metals) by cation exchange resin (CER), a hydroxyapatite (HAP) product with a purity of > 85 % was harvested from the extract by precipitation with CaCl2. By contrast, without CER purification, a crude product of Ca/Mg-carbonates and phosphates mixture were obtained from this extract. A total of 73.2 wt% of P was ultimately recovered from SSA through integrated fungal extraction, CER purification, and HAP crystallization. These findings provide a mechanistic basis for the development of waste management strategies for improved P reclamation with minimal chemical organics consumption.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Fósforo/química , Aguas del Alcantarillado/química , Aspergillus niger , Fosfatos/química , Extractos Vegetales
18.
Environ Pollut ; 313: 120115, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122654

RESUMEN

Modification of biochar by low-cost iron sources has gained increasing attention to improve pollutants removal performance and reduce production costs compared to conventional chemical modifications. While such iron sources generally have complex compositions, their effects on properties of the iron-biochar composite are not well investigated. This study produced an iron-biochar (RBC) composite from co-pyrolysis of incinerated sewage sludge ash (ISSA) and peanut shell, and examined the role of silica with widespread existence in ISSA and other low-cost iron sources on properties of the iron-biochar composite relevant to As(III)/As(V) removal. Silica was found to react with iron during the pyrolysis process at 850 °C and formed iron silicon at the expense of producing zero valent iron and Fe3O4 which resulted in a poorer removal efficacy for As(III) and As(V) compared to the iron-biochar (FBC) made from pure Fe2O3 and peanut shell. Moreover, a high leaching of reactive silica from RBC was observed which affected the formation of corrosion products of ZVI and competed with arsenic for active adsorption sites. Despite this, RBC still exhibited a maximum adsorption capacity of 17.44 and 57.56 mg/g towards As(III) and As(V) respectively at pH 3.0. Overall, this study provides an interesting insight into upcycling ISSA into useful media for sorptive removal of arsenic from aqueous solutions.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Adsorción , Arachis , Arsénico/química , Carbón Orgánico/química , Hierro/química , Pirólisis , Aguas del Alcantarillado/química , Silicio , Dióxido de Silicio , Contaminantes Químicos del Agua/análisis
19.
Fungal Biol ; 126(5): 356-365, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35501031

RESUMEN

Successful application of microbial biofertilizers, such as phosphorus (P) solubilizing fungi to agroecosystems, is constrained from the lack of knowledge about their ecology; for example in terms of how they respond to an external input of carbon (C) to get established in the soil. In two soil incubation experiments we examined the performance of the P solubilizing fungus Penicillium aculeatum in non-sterile and semi-sterile (γ-irradiated) soil with different C and P sources. Results from the first experiment with C sources showed that starch and cellulose generally improved P solubilization by P. aculeatum measured as water extractable P (Pwep), though only significantly in non-sterile soil. This coincided with an increased population density of P. aculeatum measured with a hygromycin B resistant strain of this fungus. Soil respiration used to measure soil microbial activity was overall much higher in treatments with C compounds than without C in both non-sterile and semi-sterile soil. However, soil respiration was highest with cellulose in semi-sterile soil, especially in combination with P. aculeatum. Hence, for the second experiment with P sources (tricalcium phosphate (TCP) and sewage sludge ash) cellulose was used as a C source for P. aculeatum growth in all treatments. Main results showed that P. aculeatum in combination with cellulose soil amendment increased soil Pwep independent of soil sterilization and P source treatments. Soil resin P (Pres) and microbial P (Pmic), which represents stocks of potentially plant available P, were also affected from P. aculeatum inoculation. Increased soil Pres from TCP and sewage sludge ash was observed with P. aculeatum independent of soil type. On the other hand soil Pmic was higher after P. aculeatum inoculation only in semi-sterile soil. Population density of P. aculeatum measured with qPCR was maintained or increased in non-sterile and semi-sterile soil, respectively, compared to the original inoculum load of P. aculeatum. In conclusion, our results underline the importance of C source addition for P. aculeatum if used as a biofertilizer. For this, cellulose seems to be a promising option promoting P. aculeatum growth and P solubilization also in non-sterilized soil.


Asunto(s)
Suelo , Talaromyces , Celulosa , Aguas del Alcantarillado , Microbiología del Suelo , Esterilización
20.
J Hazard Mater ; 435: 128971, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35472547

RESUMEN

Sustainable stabilization/solidification (S/S) incorporating biochar for hazardous wastes has attracted increasing attention. In this study, contaminated marine sediments were remediated and recycled as useful materials via cement-based S/S process incorporating iron-biochar composites derived from incinerated sewage sludge ash (ISSA) and peanut shell. Results showed that incorporation of 20% iron-biochar composites notably increased the Cr immobilization (52.8% vs 92.1-99.7%), while attained similar As (70%) and Cu (95%) immobilization efficiencies compared to the control group (CK) prepared with plain cement as the binder based on the Toxicity Characteristic Leaching Procedure. S/S products with the addition of ISSA derived iron-biochar composite had a mechanical strength of 5.0 MPa, which was significantly higher than its counterparts derived from pure iron oxide or pristine biochar (< 4.5 MPa). Microstructural and spectroscopic characterizations and chemical leaching experiments demonstrated that reduction of Cr(VI) to Cr(III) followed by formation of Cr-Fe precipitates by zero valent iron in iron-biochar composites contributed to the enhanced immobilization efficacy of Cr(VI) compared to CK. Overall, these results demonstrated the potential of applying ISSA and peanut shell derived iron-biochar composites as additives in the cement-based S/S treatment for contaminated sediments.


Asunto(s)
Carbón Orgánico , Hierro , Carbón Orgánico/química , Sedimentos Geológicos , Reciclaje , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA