Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38932301

RESUMEN

Group B Streptococcus (GBS) is a life-threatening opportunistic pathogen, particularly in pregnant women, infants, and the elderly. Currently, maternal vaccination is considered the most viable long-term option for preventing GBS mother-to-infant infection, and two polysaccharide conjugate vaccines utilizing CRM197 as a carrier protein have undergone clinical phase II trials. Surface immunogenic protein (Sip), present in all identified serotypes of GBS strains so far, is a protective surface protein of GBS. In this study, the type Ia capsular polysaccharide (CPS) of GBS was utilized as a model to develop candidate antigens for a polysaccharide conjugate vaccine by coupling it with the Sip of GBS and the traditional carrier protein CRM197. Serum analysis from immunized New Zealand rabbits and CD1 mice revealed that there was no significant difference in antibody titers between the Ia-Sip group and Ia-CRM197 group; however, both were significantly higher than those observed in the Ia polysaccharide group. Opsonophagocytosis and passive immune protection results using rabbit serum indicated no significant difference between the Ia-Sip and Ia-CRM197 groups, both outperforming the Ia polysaccharide group. Furthermore, serum from the Ia-Sip group had a cross-protective effect on multiple types of GBS strains. The challenge test results in CD1 mice demonstrated that the Ia-Sip group provided complete protection against lethal doses of bacteria and also showed cross-protection against type III strain. Our study demonstrates for the first time that Ia-Sip is immunogenic and provides serotype-independent protection in glycan conjugate vaccines, which also indicates Sip may serve as an excellent carrier protein for GBS glycan conjugate vaccines and provide cross-protection against multiple GBS strains.

2.
Front Immunol ; 14: 1187773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680628

RESUMEN

Extensive efforts have been made toward improving effective strategies for pneumococcal vaccination, focusing on evaluating the potential of multivalent protein-based vaccines and overcoming the limitations of pneumococcal polysaccharide-based vaccines. In this study, we investigated the protective potential of mice co-immunization with the pneumococcal PhtD and novel rPspA proteins against pneumococcal sepsis infection. The formulations of each antigen alone or in combination were administered intraperitoneally with alum adjuvant into BALB/c mice three times at 14-day intervals. The production of antigen-specific IgG, IgG1 and IgG2a subclasses, and IL-4 and IFN-γ cytokines, were analyzed. Two in vitro complement- and opsonophagocytic-mediated killing activities of raised antibodies on day 42 were also assessed. Finally, the protection against an intraperitoneal challenge with 106 CFU/mouse of multi-drug resistance of Streptococcus pneumoniae ATCC49619 was investigated. Our findings showed a significant increase in the anti-PhtD and anti-rPspA sera IgG levels in the immunized group with the PhtD+rPspA formulation compared to each alone. Moreover, the results demonstrated a synergistic effect with a 6.7- and 1.3- fold increase in anti-PhtD and anti-rPspA IgG1, as well as a 5.59- and 1.08- fold increase in anti-PhtD and anti-rPspA IgG2a, respectively. Co-administration of rPspA+PhtD elicited a mixture of Th-2 and Th-1 immune responses, more towards Th-2. In addition, the highest complement-mediated killing activity was observed in the sera of the immunized group with PhtD+rPspA at 1/16 dilution, and the opsonophagocytic activity was increased from 74% to 86.3%. Finally, the survival rates showed that mice receiving the rPspA+PhtD formulation survived significantly longer (100%) than those receiving protein alone or PBS and exhibited the strongest clearance with a 2 log10 decrease in bacterial load in the blood 24h after challenge compared to the control group. In conclusion, the rPspA+PhtD formulation can be considered a promising bivalent serotype-independent vaccine candidate for protection against invasive pneumococcal infection in the future.


Asunto(s)
Infecciones Neumocócicas , Vacunas , Animales , Ratones , Streptococcus pneumoniae , Infecciones Neumocócicas/prevención & control
3.
J Transl Med ; 21(1): 13, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627666

RESUMEN

BACKGROUND: The pathogenicity of pneumococcus with high morbidity, mortality, and multi-drug resistance patterns has been increasing. The limited coverage of the licensed polysaccharide-based vaccines and the replacement of the non-vaccine serotypes are the main reasons for producing a successful serotype-independent vaccine. Pneumococcal surface protein A (PspA) is an extremely important virulence factor and an interesting candidate for conserved protein-based pneumococcal vaccine classified into two prominent families containing five clades. PspA family-elicited immunity is clade-dependent, and the level of the PspA cross-reactivity is restricted to the same family. METHODS: To cover and overcome the clade-dependent immunity of the PspAs in this study, we designed and tested a PspA1-5c+p vaccine candidate composed of the highest immunodominant coverage of B- and T-cell epitope truncated domain of each clade focusing on two cross-reactive B and C regions of the PspAs. The antigenicity, toxicity, physicochemical properties, 3D structure prediction, stability and flexibility of the designed protein using molecular dynamic (MD) simulation, molecular docking of the construct withHLADRB1*(01:01) and human lactoferrin N-lop, and immune simulation were assessed using immunoinformatics tools. In the experimental section, after intraperitoneal immunization of the mice with Alum adjuvanted recombinant PspA1-5c+p, we evaluated the immune response, cross-reactivity, and functionality of the Anti-PspA1-5c+p antibody using ELISA, Opsonophagocytic killing activity, and serum bactericidal assay. RESULTS: For the first time, this work suggested a novel PspA-based vaccine candidate using immunoinformatics tools. The designed PspA1-5c+p protein is predicted to be highly antigenic, non-toxic, soluble, stable with low flexibility in MD simulation, and able to stimulate both humoral and cellular immune responses. The designed protein also could interact strongly with HLADRB1*(01:01) and human lactoferrin N-lop in the docking study. Our immunoinformatics predictions were validated using experimental data. Results showed that the anti-PspA1-5c+p IgG not only had a high titer with strong and same cross-reactivity coverage against all pneumococcal serotypes used but also had high and effective bioactivity for pneumococcal clearance using complement system and phagocytic cells. CONCLUSION: Our findings elucidated the potential application of the PspA1-5c+p vaccine candidate as a serotype-independent pneumococcal vaccine with a strong cross-reactivity feature. Further in-vitro and in-vivo investigations against other PspA clades should be performed to confirm the full protection of the PspA1-5c+p vaccine candidate.


Asunto(s)
Infecciones Neumocócicas , Humanos , Animales , Ratones , Serogrupo , Infecciones Neumocócicas/prevención & control , Epítopos , Lactoferrina , Simulación del Acoplamiento Molecular , Proteínas Bacterianas , Streptococcus pneumoniae , Vacunas Neumococicas , Anticuerpos , Anticuerpos Antibacterianos , Ratones Endogámicos BALB C
4.
mBio ; 13(5): e0236722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36125268

RESUMEN

Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest. To overcome these limitations, serotype-independent vaccines are being actively researched. We have developed a whole-cell gamma-irradiated Spn vaccine (termed Gamma-PN) providing serotype-independent protection. We demonstrate that Gamma-PN immunization of mice or rabbits via the clinically relevant intramuscular route induces protein-specific antibodies able to bind numerous nonvaccine encapsulated serotypes, which mediate opsonophagocytic killing and protection against lethal challenges. Gamma-PN induced comparable or superior opsonophagocytic killing assay (OPKA) responses in rabbits to the licensed Prevnar 13 vaccine (PCV13) for vaccine-included serotypes, and a superior response to nonincluded serotypes, including emergent 22F and 35B. Additionally, despite a lower observed reactogenicity, administration of Gamma-PN without adjuvant resulted in higher OPKA responses and improved protection compared to adjuvanted Gamma-PN. To our knowledge, this has not been demonstrated previously for a whole-inactivated Spn vaccine. Eliminating the requirement for adjuvant comes with numerous benefits for clinical applications of this vaccine and poses interesting questions for the inclusion of adjuvant in similar vaccines in development. IMPORTANCE The target pathogen of this study, Streptococcus pneumoniae, kills over 300,000 children <5 years of age every single year, and is the leading cause of pneumonia-associated mortality globally. While the capsular polysaccharide (CPS)-based vaccine Prevnar13 prevents serious illness caused by 13 serotypes, ongoing Prevnar13 use has driven the emergence of nonincluded serotypes as major causes of infection and disease. To overcome this issue, we have developed a next-generation pneumococcal vaccine conferring serotype-independent protection. This vaccine shows equivalent or superior efficacy to Prevnar13, and performance was heightened when our vaccine was administered with no adjuvant. These findings should be considered for similar vaccines in development, as the benefit of adjuvant is often assumed and its automatic inclusion may be limiting product efficacy, resulting in potential abandonment of viable vaccine candidates, or prolonging their time to clinic.


Asunto(s)
Anticuerpos Antibacterianos , Infecciones Neumocócicas , Ratones , Conejos , Animales , Vacunas Neumococicas , Streptococcus pneumoniae , Vacunas Conjugadas , Serogrupo , Infecciones Neumocócicas/prevención & control
5.
Proc Natl Acad Sci U S A ; 119(23): e2122386119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35648835

RESUMEN

Pneumococcal conjugate vaccines (PCVs) used in childhood vaccination programs have resulted in replacement of vaccine-type with nonvaccine-type pneumococci in carriage and invasive pneumococcal disease (IPD). A vaccine based on highly conserved and protective pneumococcal antigens is urgently needed. Here, we performed intranasal immunization of mice with pneumococcal membrane particles (MPs) to mimic natural nasopharyngeal immunization. MP immunization gave excellent serotype-independent protection against IPD that was antibody dependent but independent of the cytotoxin pneumolysin. Using Western blotting, immunoprecipitation, mass spectrometry, and different bacterial mutants, we identified the conserved lipoproteins MalX and PrsA as the main antigens responsible for cross-protection. Additionally, we found that omitting the variable surface protein and vaccine candidate PspA from MPs enhanced protective immune responses to the conserved proteins. Our findings suggest that MPs containing MalX and PrsA could serve as a platform for pneumococcal vaccine development targeting the elderly and immunocompromised.


Asunto(s)
Proteínas Bacterianas , Lipoproteínas , Proteínas de la Membrana , Proteínas de Transporte de Membrana , Infecciones Neumocócicas , Vacunas Neumococicas , Administración Intranasal , Animales , Proteínas Bacterianas/inmunología , Membrana Celular/inmunología , Secuencia Conservada , Reacciones Cruzadas , Humanos , Inmunización/métodos , Lipoproteínas/inmunología , Proteínas de la Membrana/inmunología , Proteínas de Transporte de Membrana/inmunología , Ratones , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/inmunología , Serogrupo , Streptococcus pneumoniae/inmunología
6.
Front Immunol ; 12: 730116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745099

RESUMEN

Klebsiella pneumoniae found in the normal flora of the human oral and intestinal tract mainly causes hospital-acquired infections but can also cause community-acquired infections. To date, most clinical trials of vaccines against K. pneumoniae have ended in failure. Furthermore, no single conserved protein has been identified as an antigen candidate to accelerate vaccine development. In this study, we identified five outer membrane proteins of K. pneumoniae, namely, Kpn_Omp001, Kpn_Omp002, Kpn_Omp003, Kpn_Omp004, and Kpn_Omp005, by using reliable second-generation proteomics and bioinformatics. Mice vaccinated with these five KOMPs elicited significantly higher antigen-specific IgG, IgG1, and IgG2a. However, only Kpn_Omp001, Kpn_Omp002, and Kpn_Omp005 were able to induce a protective immune response with two K. pneumoniae infection models. These protective effects were accompanied by the involvement of different immune responses induced by KOMPs, which included KOMPs-specific IFN-γ-, IL4-, and IL17A-mediated immune responses. These findings indicate that Kpn_Omp001, Kpn_Omp002, and Kpn_Omp005 are three potential Th1, Th2, and Th17 candidate antigens, which could be developed into multivalent and serotype-independent vaccines against K. pneumoniae infection.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/farmacología , Vacunas Bacterianas/farmacología , Infecciones por Klebsiella/prevención & control , Klebsiella pneumoniae/inmunología , Desarrollo de Vacunas , Animales , Carga Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Modelos Animales de Enfermedad , Células HL-60 , Humanos , Inmunogenicidad Vacunal , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Ratones Endogámicos BALB C , Fagocitos/inmunología , Fagocitos/microbiología , Fagocitosis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Linfocitos T/inmunología , Linfocitos T/microbiología , Vacunación , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/farmacología
7.
Vaccine ; 39(11): 1652-1660, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532546

RESUMEN

Pneumolysin is a highly conserved, cholesterol-dependent cytolysin that is an important Streptococcus pneumoniae virulence factor and an attractive target for vaccine development. To attenuate pneumolysin toxicity, a genetic toxoid was constructed with two amino acid changes, G293S and L460D, termed PLY-D, that reduced cytolytic activity > 125,000-fold. In mice, PLY-D elicited high anti-PLY IgG antibody titers that neutralized the cytolytic activity of the wild-type toxin in vitro. To evaluate the protective efficacy of PLY-D, mice were immunized intramuscularly and then challenged intranasally with a lethal dose of 28 clinical isolates of S. pneumoniae originating from different geographical locations, disease states (i.e. bacteremia, pneumonia), or body sites (i.e. sputum, blood). PLY-D immunization conferred significant protection from challenge with 17 of 20 serotypes (85%) and 22 of 28 strains (79%). Further, we demonstrated that immunization with PLY-D provided statistically significant improvement in survival against challenge with serotype 4 and 18C strains compared to mice immunized with a pneumococcal conjugate vaccine Prevnar 13® (PCV13). Co-administration of PLY-D and PCV13 conferred greater protection against challenge with a serotype 6B strain than immunization with either vaccine alone. These data indicate that PLY-D is a broadly protective antigen with the potential to serve as a serotype-independent vaccine against invasive pneumococcal disease either alone or in combination with PCVs.


Asunto(s)
Infecciones Neumocócicas , Toxoides , Animales , Proteínas Bacterianas/genética , Ratones , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Streptococcus pneumoniae , Estreptolisinas
8.
Front Vet Sci ; 7: 592, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102548

RESUMEN

Foot-and-mouth disease (FMD) is an economically devastating disease of the livestock worldwide and caused by the FMD virus (FMDV), which has seven immunologically distinct serotypes (O, A, Asia1, C, and SAT1-SAT3). Studies suggest that VP2 is relatively conserved among three surface-exposed capsid proteins (VP1-VP3) of FMDV, but the level of conservation has not yet been reported. Here we analyzed the comparative evolutionary divergence of VP2 and VP1 to determine the level of conservation in VP2 at different hierarchical levels of three FMDV serotypes (O, A, and Asia1) currently circulating in Asia through an in-depth computational analysis of 14 compiled datasets and designed a consensus VP2 protein that can be used for the development of a serotype-independent FMDV detection tool. The phylogenetic analysis clearly represented a significant level of conservation in VP2 over VP1 at each subgroup level. The protein variability analysis and mutational study showed the presence of 67.4% invariant amino acids in VP2, with the N-terminal end being highly conserved. Nine inter-serotypically conserved fragments located on VP2 have been identified, among which four sites showed promising antigenicity value and surface exposure. The designed 130 amino acid long consensus VP2 protein possessed six surface-exposed B cell epitopes, which suggests the possible potentiality of the protein for the development of a serotype-independent FMDV detection tool in Asia. Conclusively, this is the first study to report the comparative evolutionary divergence between VP2 and VP1, along with proposing the possible potentiality of a designed protein candidate in serotype-independent FMDV detection.

9.
Expert Rev Vaccines ; 18(8): 781-792, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31305196

RESUMEN

Introduction: Lower respiratory tract infections are the fourth cause of death worldwide and pneumococcus is the leading cause of pneumonia. Nonetheless, existing pneumococcal vaccines are less effective against pneumonia than invasive diseases and serotype replacement is a major concern. Protein antigens could induce serotype-independent protection, and mucosal immunization could offer local and systemic immune responses and induce protection against pneumococcal colonization and lung infection. Areas covered: Immunity induced in the experimental human pneumococcal carriage model, approaches to address the physiological barriers to mucosal immunization and improve delivery of the vaccine antigens, different strategies already tested for pneumococcal mucosal vaccination, including live recombinant bacteria, nanoparticles, bacterium-like particles, and nanogels as well as, nasal, pulmonary, sublingual and oral routes of vaccination. Expert opinion: The most promising delivery systems are based on nanoparticles, bacterial-like particles or nanogels, which possess greater immunogenicity than the antigen alone and are considered safer than approaches based on living cells or toxoids. These particles can protect the antigen from degradation, eliminating the refrigeration need during storage and allowing the manufacture of dry powder formulations. They can also increase antigen uptake, control release of antigen and trigger innate immune responses.


Asunto(s)
Inmunidad Mucosa/inmunología , Vacunas Neumococicas/administración & dosificación , Neumonía Neumocócica/prevención & control , Animales , Antígenos Bacterianos/inmunología , Humanos , Nanopartículas , Vacunas Neumococicas/inmunología , Neumonía Neumocócica/inmunología , Serogrupo , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/aislamiento & purificación , Vacunación/métodos
10.
Virology ; 533: 145-154, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31170612

RESUMEN

Foot-and-mouth disease virus (FMDV) exhibits a high degree of antigenic diversity among its serotypes, requiring several anti-FMDV antibodies for its laboratory diagnosis, which complicated the used techniques. To conquer this cumbersome, we developed a new panel of different single-chain fragment variable (scFv) for serotype-independent detection of FMDV. The recombinant VP2 capsid protein, as a relatively conserved protein among FMDV serotypes, was expressed in E. Coli, and injected in mice. Spleen's RNA was extracted for isolating the coding sequences of IgG variable domains that were assembled into repertoires of scFv. Phage library displaying scFv was constructed with ∼1.9 × 108 plaque forming units. Characterization of the library showed eight of unique scFvs, which were expressed as bacterial periplasmic proteins with apparent molecular weight of ∼27 kDa. Our data revealed the broad-spectrum binding affinity of the eight scFvs as both coating and tracing antibodies to FMDV serotypes A, O, and SAT 2.


Asunto(s)
Proteínas de la Cápside/inmunología , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/virología , Anticuerpos de Cadena Única/análisis , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/inmunología , Femenino , Fiebre Aftosa/diagnóstico , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/inmunología , Humanos , Inmunización , Ratones , Ratones Endogámicos BALB C , Biblioteca de Péptidos , Serogrupo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología
11.
Immunol Cell Biol ; 97(8): 726-739, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31050022

RESUMEN

Existing capsular polysaccharide-based vaccines against pneumococcal disease are highly effective against vaccine-included serotypes, but they are unable to combat serotype replacement. We have developed a novel pneumococcal vaccine that confers serotype-independent protection, and could therefore constitute a "universal" vaccine formulation. This preparation is comprised of whole un-encapsulated pneumococci inactivated with gamma irradiation (γ-PN), and we have previously reported induction of cross-reactive immunity after nonadjuvanted intranasal vaccination. To further enhance vaccine immunogenicity and safety, we modified the pneumococcal vaccine strain to induce a stressed state during growth. Specifically, the substrate binding component of the psaBCA operon for manganese import was mutated to create a pneumococcal surface antigen A (psaA) defective vaccine strain. psaA mutation severely attenuated the growth of the vaccine strain in vitro without negatively affecting pneumococcal morphology, thereby enhancing vaccine safety. In addition, antibodies raised against vaccine preparations based on the modified strain [γ-PN(ΔPsaA)] showed more diversified reactivity to wild-type pneumococcal challenge strains compared to those induced by the original formulation. The modified vaccine also induced comparable protective TH 17 responses in the lung, and conferred greater protection against lethal heterologous pneumococcal challenge. Overall, the current study demonstrates successful refinement of a serotype-independent pneumococcal vaccine candidate to enhance safety and immunogenicity.


Asunto(s)
Adhesinas Bacterianas/inmunología , Lipoproteínas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Adhesinas Bacterianas/genética , Administración Intranasal , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Inmunogenicidad Vacunal , Lipoproteínas/genética , Pulmón/citología , Pulmón/inmunología , Ratones , Mutación , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/efectos adversos , Vacunas Neumococicas/genética , Streptococcus pneumoniae/genética , Células Th17/inmunología , Vacunación/métodos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología
12.
Vaccine ; 37(1): 160-168, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30442480

RESUMEN

Vaccination is an effective strategy to prevent pneumococcal diseases. Currently, licensed vaccines include the pneumococcal polysaccharide vaccine (PPSV) and the pneumococcal conjugate vaccine (PCV), which target some of the most common of the 94 serotypes of S. pneumoniae based on their capsular composition. However, it has been reported that PPSV is not effective in children aged less than 2 years old and PCV induces serotype replacement, which means that the pneumococcal population has changed following widespread introduction of these vaccines, and the non-vaccine serotypes have increased in being the cause of invasive pneumococcal disease. Therefore, it is important that there is development of novel pneumococcal vaccines to either replace or complement current polysaccharide-based vaccines. Our previous study suggested that S. pneumoniae releases elongation factor Tu (EF-Tu) through autolysis followed by the induction of proinflammatory cytokines in macrophages via toll-like receptor 4, that may contribute to the development of pneumococcal diseases. In this study, we investigated the expression of EF-Tu in various S. pneumoniae strains and whether EF-Tu could be an antigen candidate for serotype-independent vaccine against pneumococcal infection. Western blotting and flow cytometry analysis revealed that EF-Tu is a common factor expressed on the surface of all pneumococcal strains tested, as well as intracellularly. In addition, we demonstrate that immunization with recombinant (r) EF-Tu induced the production of inflammatory cytokines and the IgG1 and IgG2a antibodies in mice, and increased the CD4+ T-cells proportion in splenocytes. We also reveal that anti-EF-Tu serum increased the phagocytic activity of mouse peritoneal macrophages against S. pneumoniae infection, independent of their serotypes. Finally, our results indicate that mice immunized with rEF-Tu were significantly and non-specifically protected against lethal challenges with S. pneumoniae serotypes (2 and 15A). Therefore, pneumococcal EF-Tu could be an antigen candidate for the serotype-independent vaccine against pneumococcal infection.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Citocinas/inmunología , Inmunoglobulina G/sangre , Macrófagos/inmunología , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Fagocitosis , Infecciones Neumocócicas/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Serogrupo , Streptococcus pneumoniae
13.
Expert Rev Vaccines, v. 18, n. 8, p. 781-792, Jul. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2823

RESUMEN

Introduction: Lower respiratory tract infections are the fourth cause of death worldwide and pneumococcus is the leading cause of pneumonia. Nonetheless, existing pneumococcal vaccines are less effective against pneumonia than invasive diseases and serotype replacement is a major concern. Protein antigens could induce serotype-independent protection, and mucosal immunization could offer local and systemic immune responses and induce protection against pneumococcal colonization and lung infection. Areas covered: Immunity induced in the experimental human pneumococcal carriage model, approaches to address the physiological barriers to mucosal immunization and improve delivery of the vaccine antigens, different strategies already tested for pneumococcal mucosal vaccination, including live recombinant bacteria, nanoparticles, bacterium-like particles, and nanogels as well as, nasal, pulmonary, sublingual and oral routes of vaccination. Expert opinion: The most promising delivery systems are based on nanoparticles, bacterial-like particles or nanogels, which possess greater immunogenicity than the antigen alone and are considered safer than approaches based on living cells or toxoids. These particles can protect the antigen from degradation, eliminating the refrigeration need during storage and allowing the manufacture of dry powder formulations. They can also increase antigen uptake, control release of antigen and trigger innate immune responses.

14.
J Appl Microbiol ; 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30133088

RESUMEN

AIMS: Pneumococcal infections are a major public health problem, especially in developing countries, and the current pneumococcal vaccines do not cover all pathogenic strains. New, more economical serotype-independent vaccines based on species-common protein antigens are being pursued. The pneumococcal whole-cell vaccine which is based on noncapsular antigens common to all strains induces serotype-independent immunity. In the present study, we developed a new candidate for a whole-cell pneumococcal vaccine in which two important virulence factors, the capsule and pneumolysin, were deleted. METHODS AND RESULTS: Protection was elicited by immunization against colonization in mice with a killed mutant strain and the antibody response in the mice serum was evaluated. This candidate vaccine was effective in preventing nasopharyngeal colonization. The mice immunized with this candidate vaccine had significantly higher serum antibody titres than mice that received the adjuvant alone. CONCLUSIONS: Based on obtained results in this study, the engineered whole-cell pneumococci can be considered as a vaccine candidate in future studies. SIGNIFICANCE AND IMPACT OF THE STUDY: This candidate vaccine can overcome the limitations of available polysaccharide vaccines.

15.
Vaccine ; 35(9): 1306-1315, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28161422

RESUMEN

The pneumococcal whole cell vaccine (PWCV) has been investigated as an alternative to polysaccharide-based vaccines currently in use. It is a non-encapsulated killed vaccine preparation that induces non-capsular antibodies protecting mice against invasive pneumococcal disease (IPD) and reducing nasopharyngeal (NP) carriage via IL-17A activation of mouse phagocytes. Here, we show that PWCV induces antibody and IL-17A production to protect mice against challenge in a fatal aspiration-sepsis model after only one dose. We observed protection even with a boiled preparation, attesting to the stability and robustness of the vaccine. PWCV antibodies were shown to bind to different encapsulated strains, but complement deposition on the pneumococcal surface was observed only on serotype 3 strains; using flow cytometer methodology, variations in PWCV quality, as in the boiled vaccine, were detected. Moreover, anti-PWCV induces phagocytosis of different pneumococcal serotypes by murine peritoneal cells in the presence of complement or IL-17A. These findings suggest that complement and IL-17A may participate in the process of phagocytosis induced by PWCV antibodies. IL-17A can stimulate phagocytic cells to kill pneumococcus and this is enhanced in the presence of PWCV antibodies bound to the bacterial cell surface. Our results provide further support for the PWCV as a broad-range vaccine against all existing serotypes, potentially providing protection for humans against NP colonization and IPD. Additionally, we suggest complement deposition assay as a tool to detect subtle differences between PWCV lots.


Asunto(s)
Complemento C3/inmunología , Interleucina-17/inmunología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Animales , Sitios de Unión de Anticuerpos , Citometría de Flujo , Ratones , Nasofaringe/microbiología , Proteínas Opsoninas/inmunología , Fagocitosis , Vacunas Neumococicas/administración & dosificación , Sepsis/inmunología , Sepsis/microbiología , Sepsis/prevención & control , Serogrupo , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
16.
Clin Sci (Lond) ; 130(9): 697-710, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26831937

RESUMEN

Generating a pneumococcal vaccine that is serotype independent and cost effective remains a global challenge. γ-Irradiation has been used widely to sterilize biological products. It can also be utilized as an inactivation technique to generate whole-cell bacterial and viral vaccines with minimal impact on pathogen structure and antigenic determinants. In the present study, we utilized γ-irradiation to inactivate an un-encapsulated Streptococcus pneumoniae strain Rx1 with an unmarked deletion of the autolysin gene lytA and with the pneumolysin gene ply replaced with an allele encoding a non-toxic pneumolysoid (PdT) (designated γ-PN vaccine). Intranasal vaccination of C57BL/6 mice with γ-PN was shown to elicit serotype-independent protection in lethal challenge models of pneumococcal pneumonia and sepsis. Vaccine efficacy was shown to be reliant on B-cells and interleukin (IL)-17A responses. Interestingly, immunization promoted IL-17 production by innate cells not T helper 17 (Th17) cells. These data are the first to report the development of a non-adjuvanted intranasal γ-irradiated pneumococcal vaccine that generates effective serotype-independent protection, which is mediated by both humoral and innate IL-17 responses.


Asunto(s)
Linfocitos B/inmunología , Rayos gamma , Inmunidad Innata , Interleucina-17/metabolismo , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/efectos de la radiación , Vacunación , Administración Intranasal , Animales , Linfocitos T CD4-Positivos/inmunología , Inmunidad Innata/inmunología , Memoria Inmunológica , Interferón gamma/metabolismo , Ratones Endogámicos C57BL , Infecciones Neumocócicas/complicaciones , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Sepsis/complicaciones , Sepsis/inmunología , Sepsis/microbiología , Sepsis/prevención & control , Serotipificación , Streptococcus pneumoniae/clasificación , Linfocitos T/inmunología , Resultado del Tratamiento
17.
Hum Vaccin Immunother ; 12(2): 383-92, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26535755

RESUMEN

Streptococcus pneumoniae remains one of the most frequent bacterial causes of morbidity and mortality worldwide. National immunization programs implementing pneumococcal polysaccharide conjugate vaccines (PCVs) have successfully reduced rates of vaccine-type invasive disease and colonization both via direct effects in immunized children and, in some settings, indirect effects in unimmunized individuals. Limitations of the current PCV approach include the emergence of non-vaccine serotypes contributing to carriage and invasive disease in high-PCV coverage settings and the high cost of goods of PCVs which limits their accessibility in developing countries where the burden of disease remains highest. Furthermore, the distribution of serotypes causing disease varies geographically and includes more serotypes than are currently covered in a single PCV formulation. Researchers have long been exploring the potential of genetically conserved non-capsular pneumococcal antigens as vaccine candidates that might overcome such limitations. To better evaluate the rationale of such approaches, an understanding of the mechanisms of immunity to the various phases of pneumococcal infection is of paramount importance. Herein we will review the evolving understanding of both vaccine-induced and naturally acquired immunity to pneumococcal colonization and infection and discuss how this informs current approaches using serotype-independent pneumococcal vaccine candidates. We will then review the alternative vaccine candidates that have been or are currently under evaluation in clinical trials.


Asunto(s)
Antígenos Bacterianos/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Vacunas Conjugadas/inmunología , Humanos , Inmunidad Innata , Programas de Inmunización , Serogrupo , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA