RESUMEN
The brain is particularly vulnerable to ethanol effects during its growth spurt. Outcomes of early ethanol exposure such as hyperactivity have been extensively investigated; however, persons with fetal alcohol spectrum disorder frequently have social impairments and are heavy drinkers. Despite that, scant information is available regarding the neurobiological basis of these latter behavioral issues. Here, Swiss mice exposed to ethanol (Etoh, 5 g/kg i.p., alternate days) or saline during the brain growth spurt [postnatal day (PN) 2 to 8] were used to assess social behavior after an ethanol challenging during adolescence. At PN39, animals were administered with a single ethanol dose (1 g/Kg) or water by gavage and were then evaluated in the three-chamber sociability test. We also evaluated corticosterone serum levels and the frontal cerebral cortex serotoninergic system. Etoh males showed reductions in sociability. Ethanol challenging reverted these alterations in social behavior, reduced corticosterone levels, and increased the 5-HT2 receptor binding of male Etoh mice. No alterations were observed in 5-HT and 5-HIAA contents. These data support the idea that ethanol exposure during the brain growth spurt impacts social abilities during adolescence, alters ethanol reexposure effects, and suggests that stress response and serotoninergic system play roles in this phenomenon.
Asunto(s)
Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Etanol/farmacología , Conducta Social , Animales , Corteza Cerebral/metabolismo , Corticosterona/sangre , Ácido Hidroxiindolacético/metabolismo , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Receptor de Serotonina 5-HT2A/metabolismoRESUMEN
The role of serotonin (5-HT) in nociception will vary according to the subtypes of receptors activated. When administered peripherally, it induces pain in humans and in rats by activation of 5-HT1, 5-HT2 and 5-HT3 receptors. In addition, endogenous 5-HT produced in situ, is involved in the nociceptive response induced by formalin in rat's paw inflammation, possibly via 5-HT3 receptors. Moreover, it has been shown that 5-HT released in the dorsal horn of the spinal cord by stimulation of the periaqueductal gray causes activation of inhibitory interneurons, resulting in inhibition of spinal neurons. In the present study we evaluated the effect of serotonin and its receptors at peripheral antinociception. The mice paw pressure test was used in animals that had increased sensitivity by an intraplantar injection of PGE2 (2 µg). We used selective antagonists of serotonin receptors (isamoltan 5-HT1B, BRL 15572 5-HT1D, ketanserin 5-HT2A, ondansetron 5-HT3 and SB-269970 5-HT7). Administration of serotonin into the right hind paw (62.5, 125, 250 and 500 ng and 1 µg) produced a dose-dependent peripheral mechanical antihyperalgesic effect of serotonin in mice. Selective antagonists for 5-HT1B, 5-HT2A, 5-HT3 receptors at doses of 0.1, 1 and 10 µg, reversed the antihyperalgesic effect induced by 250 ng serotonin. In contrast, selective antagonists for 5-HT1D and 5-HT7 receptors were unable to reverse the antihyperalgesic effect induced by serotonin. These results demonstrated for the first time, the peripheral mechanical antihyperalgesic effect of serotonin, and participation of 5-HT1B, 5-HT2A and 5-HT3 receptors in this event.
Asunto(s)
Hiperalgesia/prevención & control , Dimensión del Dolor/efectos de los fármacos , Receptores de Serotonina/metabolismo , Serotonina/farmacología , Animales , Compuestos de Bifenilo/farmacología , Dinoprostona , Relación Dosis-Respuesta a Droga , Hiperalgesia/inducido químicamente , Ketanserina/farmacología , Masculino , Ratones , Ondansetrón/farmacología , Fenoles/farmacología , Piperazinas/farmacología , Propanolaminas/farmacología , Antagonistas de la Serotonina/farmacología , Sulfonamidas/farmacologíaRESUMEN
Pesticidas organofosforados são amplamente usados e seu uso constitui um grave problema de saúde pública. A ação clássica destes compostos é a inibição irreversível da acetilcolinesterase, promovendo acúmulo de acetilcolina nas sinapses e hiperestimulação colinérgica. No entanto, as consequências da exposição a baixas doses podem se estender a outros mecanismos de ação e sistemas neurotransmissores. Considerando que crianças constituem um grupo particularmente vulnerável aos efeitos de pesticidas, neste trabalho investigamos os efeitos da exposição aos organofosforados metamidofós (MET) e clorpirifós (CPF) durante o desenvolvimento sobre os sistemas colinérgico e serotoninérgico e sobre o comportamento de camundongos. Para isso, camundongos suíços foram expostos a injeções subcutâneas de MET, clorpirifós ou veículo do terceiro (PN3) ao nono (PN9) dias de vida pós-natal. As doses de exposição foram previamente escolhidas através da construção de uma curva dose-resposta que identificou como mais adequadas para este estudo as doses de 1mg/kg de MET e 3mg/kg de CPF, as quais promoveram em torno de 20% de inibição da acetilcolinesterase. Em PN10, parte dos animais foi sacrificada e foram avaliados os sistemas colinérgico e serotoninérgico no tronco encefálico e córtex cerebral. De PN60 a PN63, os animais foram submetidos a uma bateria de testes comportamentais. Em seguida, estes animais também foram sacrificados tendo sido avaliados os sistemas colinérgico e serotoninérgico. Em PN10, MET e CPF causaram alterações que sugerem aumento da atividade colinérgica respectivamente no tronco e córtex em fêmeas. No sistema serotoninérgico, apenas CPF promoveu alterações, aumentando a ligação ao receptor 5HT1A e transportador 5HT em fêmeas e diminuindo na ligação ao 5HT2. Em PN63, a atividade da acetilcolinesterase foi reestabelecida em todos os grupos. Ainda assim, MET diminuiu a atividade da colina acetiltransferase no córtex e a ligação ao transportador colinérgico.
Organophosphate pesticides are widely used and its use consist on a severe public health problem. The classic effect of these compounds involve irreversible inhibition of the enzyme acetylcholinesterase, causing an accumulation of acetylcholine at cholinergic synapses and, consequently, cholinergic hyperstimulation. However, when the doses of exposure are low, other the mechanisms of action may play a role and other neurotransmitter systems may be affected. Considering that children are particularly vulnerable to effects of these compounds, in this study we investigated the effects of methamidophos and chlorpyrifos organophosphate exposure during development on cholinergic and serotonergic systems and behavior. For this purpose, Swiss mice received subcutaneous injections of methamidophos or chlorpyrifos, or vehicle from the third to the nineth postnatal day (PN3 - PN9). Initially, a dose-response study was performed and the doses of 1mg/kg methamidophos and 3mg/kg chlorphrifos, which promoted 20% inhibition of acetylcholinesterase activity in brain were chosen to be used in the next set of experiments. At PN10, one day after exposure, a group of animals was sacrificed and the brainstem and cortex collected and stored to further analysis of cholinergic and serotonergic systems. From PN60 to PN63 the animals were submitted to behavioral tests in order to evaluate: anxiety, locomotor activity, decision making, depressive-like behavior and learning/memory. After the last test, the animals were sacrificed and the brainstem and cortex collected and stored to further analysis of cholinergic and serotonergic systems. At PN10, methamidophos and chlorpyrifos promoted alterations that suggest an increase of cholinergic activity respectively on the brainstem and cortex of females. As for the serotonergic system: only chlorpyrifos elicited alterations: There were increases in 5HT1A receptor and 5HT transporter binding in females and a decrease in 5HT2 receptor binding.