Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(8): e0044524, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39041801

RESUMEN

Microbial communities offer considerable potential for tackling environmental challenges by improving the functioning of ecosystems. Top-down community engineering is a promising strategy that could be used to obtain communities of desired function. However, the ecological factors that control the balance between community shaping and propagation are not well understood. Dairy backslopping, which consists of using part of the previous production to inoculate a new one, can be used as a model engineering approach to investigate community dynamics during serial propagations. In this study, 26 raw milk samples were serially propagated 6 times each, giving rise to 26 community lineages. Bacterial community structures were analyzed by metabarcoding, and acidification was recorded by pH monitoring. The results revealed that different types of community lineages could be obtained in terms of taxonomic composition and dynamics. Five lineages reached a repeatable community structure in a few propagation steps, with little variation between the final generations, giving rise to stable acidification kinetics. Moreover, these stabilized communities presented a high variability of structure and diverse acidification properties between community lineages. Besides, the other lineages were characterized by different levels of dynamics leading to parallel or divergent trajectories. The functional properties and dynamics of the communities were mainly related to the relative abundance and the taxonomic composition of lactic acid bacteria within the communities. These findings highlight that short-term schemes of serial fermentation can produce communities with a wide range of dynamics and that the balance between community shaping and propagation is intimately linked to community structure. IMPORTANCE: Microbiome applications require approaches for shaping and propagating microbial communities. Shaping allows the selection of communities with desired taxonomic and functional properties, while propagation allows the production of the biomass required to inoculate the engineered communities in the target ecosystem. In top-down community engineering, where communities are obtained from a pool of mixed microorganisms by acting on environmental variables, a major challenge is to master the balance between shaping and propagation. However, the ecological factors that favor high dynamics of community structure and, conversely, those that favor stability during propagation are not well understood. In this work, short-term dairy backslopping was used to investigate the key role of the taxonomic composition and structure of bacterial communities on their dynamics. The results obtained open up interesting prospects for the biotechnological use of microbiomes, particularly in the field of dairy fermentation, to diversify approaches for injecting microbial biodiversity into cheesemaking processes.


Asunto(s)
Fermentación , Microbiota , Leche , Animales , Leche/microbiología , Concentración de Iones de Hidrógeno , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo
2.
FEMS Microbiol Ecol ; 99(10)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37771082

RESUMEN

The influence of community diversity, which can be measured at the level of metabolic guilds, on community function is a central question in ecology. Particularly, the long-term temporal dynamic between a community's function and its diversity remains unclear. We investigated the influence of metabolic guild diversity on associated community function by propagating natural microbial communities from a traditionally fermented milk beverage diluted to various levels. Specifically, we assessed the influence of less abundant microbial types, such as yeast, on community functionality and bacterial community compositions over repeated propagation cycles amounting to ∼100 generations. The starting richness of metabolic guilds had a repeatable effect on bacterial community compositions, metabolic profiles, and acidity. The influence of a single metabolic guild, yeast in our study, played a dramatic role on function, but interestingly not on long-term species sorting trajectories of the remaining bacterial community. Our results together suggest an unexpected niche division between yeast and bacterial communities and evidence ecological selection on the microbial communities in our system.


Asunto(s)
Alimentos Fermentados , Microbiota , Saccharomyces cerevisiae , Bacterias/genética
3.
Virus Res ; 208: 82-8, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26091822

RESUMEN

A severe porcine epidemic diarrhea (PED) epizootic has been affecting pigs of all ages that are characterized by high mortality among suckling piglets in China since late 2010, causing significant economic losses. Obtaining a current-circulating PEDV variant isolate that can grow efficiently in cell culture is prerequisite for the development of efficient vaccines. In this study, PEDV strain HN1303 was isolated successfully on Vero cells with supplemental trypsin, and the isolate has been serially propagated in cell culture for over 95 passages. The infectious titers of the virus during the first 10 passages ranged from 10(2.6) to 10(5.8) 50% tissue culture infective doses (TCID50)/ml, and the titers of 20-95 passages ranged from 10(6.2) to 10(8.0)TCID50/ml. The growth curve of Vero cell-adapted HN1303 in cell culture was determined, and dynamics of virus production was confirmed by immunoperoxidase monolayer assay (IPMA). Sequence and phylogenetic analysis based on spike gene indicate that the HN1303 strain belongs to genotype IIa. In addition, the fourth passage cell-culture HN1303 was subjected to 2-day old piglets. All piglets orally inoculated developed severe watery diarrhea and vomiting within 24 hours post-inoculation (hpi) and died within 72 hpi. The results of animal experiments reveal that this strain is highly pathogenic to 2-day old piglets.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Intestinos/virología , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Enfermedades de los Porcinos/virología , Secuencia de Aminoácidos , Animales , China/epidemiología , Chlorocebus aethiops , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Diarrea/epidemiología , Diarrea/virología , Datos de Secuencia Molecular , Filogenia , Virus de la Diarrea Epidémica Porcina/clasificación , Virus de la Diarrea Epidémica Porcina/genética , Alineación de Secuencia , Porcinos , Enfermedades de los Porcinos/epidemiología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA