Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurorehabil Neural Repair ; 37(9): 662-673, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37750660

RESUMEN

BACKGROUND: Exercise and cognitive training have been shown to induce neuroplastic changes and modulate cognitive function following stroke. However, it remains unclear whether hybridized exercise-cognitive training facilitates cortical activity and further influences cognitive function after stroke. OBJECTIVE: The study aimed to investigate the effects of 2 hybridized exercise-cognitive trainings on neuroplastic changes and behavioral outcomes in stroke survivors with mild cognitive decline. METHODS: This study was a single-blind randomized controlled trial. Stroke survivors were randomly assigned to 1 of 3 groups: (1) sequential exercise-cognitive training (SEQ), (2) dual-task exercise-cognitive training (DUAL), or (3) control group (CON). All groups underwent training 60 min per day, 3 days per week, for a total of 12 weeks. The primary outcome was the resting-state (RS) functional connectivity (FC) in functional magnetic resonance imaging. Secondary behavioral outcomes included cognitive and physical functions. RESULTS: After 12 weeks of training, patients in the SEQ group (n = 21) exhibited increased RS FC between the left occipital lobe and posterior cingulate gyrus with right parietal lobe, compared to the DUAL (n = 22) and CON (n = 20) groups. Additionally, patients in the DUAL group showed increased FC of the left temporal lobe. However, changes in behavioral outcome measures were non-significant among the 3 groups (all P's > .05). CONCLUSIONS: This study highlights the distinct neuroplastic mechanisms associated with 2 types of exercise-cognitive hybridized trainings. The pre-post functional magnetic resonance imaging measurements illustrated the time course of neural mechanisms for cognitive recovery in stroke survivors following different exercise-cognitive training approaches. Trial registration. NCT03230253.


Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Entrenamiento Cognitivo , Método Simple Ciego , Disfunción Cognitiva/etiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Sobrevivientes
2.
Contemp Clin Trials Commun ; 9: 164-171, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29696239

RESUMEN

PURPOSE: Cognitive decline after stroke is highly associated with functional disability. Empirical evidence shows that exercise combined cognitive training may induce neuroplastic changes that modulate cognitive function. However, it is unclear whether hybridized exercise-cognitive training can facilitate cortical activity and physiological outcome measures and further influence on the cognitive function after stroke. This study will investigate the effects of two hybridized exercise-cognitive trainings on brain plasticity, physiological biomarkers and behavioral outcomes in stroke survivors with cognitive decline. METHODS AND SIGNIFICANCE: This study is a single-blind randomized controlled trial. A target sample size of 75 participants is needed to obtain a statistical power of 95% with a significance level of 5%. Stroke survivors with mild cognitive decline will be stratified by Mini-Mental State Examination scores and then randomized 1:1:1 to sequential exercise-cognitive training, dual-task exercise-cognitive training or control groups. All groups will undergo training 60 min/day, 3 days/week, for a total of 12 weeks. The primary outcome is the resting-state functional connectivity and neural activation in the frontal, parietal and occipital lobes in functional magnetic resonance imaging. Secondary outcomes include physiological biomarkers, cognitive functions, physical function, daily functions and quality of life. This study may differentiate the effects of two hybridized trainings on cognitive function and health-related conditions and detect appropriate neurological and physiological indices to predict training effects. This study capitalizes on the groundwork for a non-pharmacological intervention of cognitive decline after stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA