Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Behav Ecol ; 35(2): arae006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379814

RESUMEN

The sensory trap model of signal evolution suggests that males manipulate females into mating using traits that mimic cues used in a nonsexual context. Despite much empirical support for sensory traps, little is known about how females evolve in response to these deceptive signals. Female sea lamprey (Petromyzon marinus) evolved to discriminate a male sex pheromone from the larval odor it mimics and orient only toward males during mate search. Larvae and males release the attractant 3-keto petromyzonol sulfate (3kPZS), but spawning females avoid larval odor using the pheromone antagonist, petromyzonol sulfate (PZS), which larvae but not males, release at higher rates than 3kPZS. We tested the hypothesis that migratory females also discriminate between larval odor and the male pheromone and orient only to larval odor during anadromous migration, when they navigate within spawning streams using larval odor before they begin mate search. In-stream behavioral assays revealed that, unlike spawning females, migratory females do not discriminate between mixtures of 3kPZS and PZS applied at ratios typical of larval versus male odorants. Our results indicate females discriminate between the sexual and nonsexual sources of 3kPZS during but not outside of mating and show sensory traps can lead to reliable sexual communication without females shifting their responses in the original context.

2.
J Exp Biol ; 227(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38270203

RESUMEN

The evolutionary origins of sexual preferences for chemical signals remain poorly understood, due, in part, to scant information on the molecules involved. In the current study, we identified a male pheromone in lake char (Salvelinus namaycush) to evaluate the hypothesis that it exploits a non-sexual preference for juvenile odour. In anadromous char species, the odour of stream-resident juveniles guides migratory adults into spawning streams. Lake char are also attracted to juvenile odour but have lost the anadromous phenotype and spawn on nearshore reefs, where juvenile odour does not persist long enough to act as a cue for spawning site selection by adults. Previous behavioural data raised the possibility that males release a pheromone that includes components of juvenile odour. Using metabolomics, we found that the most abundant molecule released by males was also released by juveniles but not females. Tandem mass spectrometry and nuclear magnetic resonance were used to identify the molecule as taurocholic acid (TCA), which was previously implicated as a component of juvenile odour. Additional chemical analyses revealed that males release TCA at high rates via their urine during the spawning season. Finally, picomolar concentrations of TCA attracted pre-spawning and spawning females but not males. Taken together, our results indicate that male lake char release TCA as a mating pheromone and support the hypothesis that the pheromone is a partial match of juvenile odour.


Asunto(s)
Trucha , Animales , Femenino , Masculino , Feromonas , Reproducción , Ácido Taurocólico
3.
Curr Biol ; 31(9): 1970-1976.e4, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33636120

RESUMEN

Darwin argued that females' "taste for the beautiful" drives the evolution of male extravagance,1 but sexual selection theory also predicts that extravagant ornaments can arise from sexual conflict and deception.2,3 The sensory trap hypothesis posits that elaborate sexual signals can evolve via antagonistic coevolution whereby one sex uses deceptive mimicry to manipulate the opposite sex into mating.3 Here, the success of deceptive mimicry depends on whether it matches the receiver's percept of the model,4 and so has little in common with concepts of aesthetic judgement and 'beauty.'1,5-9 We report that during their song and dance displays,10 male superb lyrebirds (Menura novaehollandiae) create an elaborate acoustic illusion of a mixed-species mobbing flock. Acoustic analysis showed that males mimicked the mobbing alarm calls of multiple species calling together, enhancing the illusion by also vocally imitating the wingbeats of small birds. A playback experiment confirmed that this illusion was sufficient to fool avian receivers. Furthermore, males produced this mimicry only (1) when females attempted to exit male display arenas, and (2) during the lyrebirds' unusually long copulation, suggesting that the mimicry aims to prevent females from prematurely terminating these crucial sexual interactions. Such deceptive behavior by males should select for perceptual acuity in females, prompting an inter-sexual co-evolutionary arms race between male mimetic accuracy and discrimination by females. In this way the elaboration of the complex avian vocalizations we call 'song' could be driven by sexual conflict, rather than a female's preference for male extravagance.


Asunto(s)
Acoso Escolar , Ilusiones , Acústica , Animales , Aves , Copulación , Cortejo , Femenino , Masculino , Conducta Sexual Animal , Vocalización Animal
4.
Evolution ; 70(6): 1398-408, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27166820

RESUMEN

Selection for signal efficacy in variable environments may favor color polymorphism, but little is known about this possibility outside of sexual systems. Here we used the color polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-banded dorsal signal attracts dipteran prey, to test the hypothesis that morphs may be tuned to optimize either chromatic or achromatic conspicuousness in their visually noisy forest environments. We used data from extensive observations of naturally existing spiders and precise assessments of visual environments to model signal conspicuousness according to dipteran vision. Modeling supported a distinct bias in the chromatic (yellow morph) or achromatic (white morph) contrast presented by spiders at the times when they caught prey, as opposed to all other times at which they may be viewed. Hence, yellow spiders were most successful when their signal produced maximum color contrast against viewing backgrounds, whereas white spiders were most successful when they presented relatively greatest luminance contrast. Further modeling across a hypothetical range of lure variation confirmed that yellow versus white signals should, respectively, enhance chromatic versus achromatic conspicuousness to flies, in G. fornicata's visual environments. These findings suggest that color polymorphism may be adaptively maintained by selection for conspicuousness within different visual channels in receivers.


Asunto(s)
Dípteros/fisiología , Fototaxis , Pigmentación , Conducta Predatoria , Arañas/fisiología , Animales , Color , Percepción de Color , Femenino , Cadena Alimentaria
5.
Ecol Evol ; 6(20): 7443-7450, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-28725411

RESUMEN

The interplay between a receiver's sensory system and a sender's courtship signals is fundamental to the operation of sexual selection. Male courtship signals that match a female receiver's preexisting perceptual biases can be favored yet the message they communicate is not always clear. Do they simply beacon the male's location or also indicate his quality? We explored this question in a species of fiddler crab Uca terpsichores that courts under elevated predation risk and that mates and breeds underground in the safety of males' burrows. Sexually receptive females leave their own burrows and are thereby exposed to avian predators as they sequentially approach several courting males before they choose one. Males court by waving their single greatly enlarge claw and sometimes by building a sand hood next to their burrow entrance. Hoods are attractive because they elicit a risk-reducing orientation behavior in females, and it has been suggested that claw waving may also serve primarily to orient the female to the male. If the wave communicates male quality, then females should discriminate mates on the basis of variation in elements of the wave, as has been shown for other fiddler crabs. Alternatively, variation in elements of the claw waving display may have little effect on the display's utility as a beacon of the location of the male and his burrow. We filmed courting males and females under natural conditions as females responded to claw waving and chose mates. Analysis of the fine-scale courtship elements between the males that females rejected and those they chose revealed no differences. When predation risk during courtship is high, males' courtship displays may serve primarily to guide females to safe mating and breeding sites and not as indicators of male quality apart from their roles as beacons.

6.
Commun Integr Biol ; 5(6): 637-40, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23739157

RESUMEN

The aye-aye is a rare lemur from Madagascar that uses its highly specialized middle digit for percussive foraging. This acoustic behavior, also termed tap-scanning, produces dominant frequencies between 6 and 15 kHz. An enhanced auditory sensitivity to these frequencies raises the possibility that the acoustic and auditory specializations of aye-ayes have imposed constraints on the evolution of their vocal signals, especially their primary long-distance vocalization, the screech. Here we explore this concept, termed receiver bias, and suggest that the dominant frequency of the screech call (~2.7 kHz) represents an evolutionary compromise between the opposing adaptive advantages of long-distance sound propagation and enhanced detection by conspecific receivers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA