Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37921397

RESUMEN

The management of infected wound healing remains a formidable challenge primarily due to the absence of an ideal wound dressing that can not only effectively inhibit persistent bacterial infection and mitigate excessive inflammation but also possess appropriate mechanical strength, moderate adhesiveness, and favorable self-healability to maintain its protective function and facilitate easy change. In this study, we present an effective strategy for the preparation of a novel composite hydrogel under mild conditions, without the need for additives. This is achieved by incorporating resveratrol (RSV)-loaded alkali lignin nanoparticles (ARNPs) into an advanced polyacrylamide-based hydrogel matrix. The utilization of ARNPs facilitated the sustained release of RSV, thereby enhancing its bioavailability. The polymerization of acrylamide was gently triggered by free radicals generated through a novel dual self-redox mechanism involving silver ions (Ag+), catechols, and ammonium persulfate in neutral and at room temperature, without the requirement of cross-linkers. The dual self-redox reactions played a dominant role in facilitating the gelation process and imparting the desired properties to the resulting hydrogels. The obtained product exhibited exceptional antibacterial properties, favorable anti-inflammatory activity, superior tensile strength, moderate adhesiveness, and reliable self-healability, thereby accelerating the closure of infected wounds. Collectively, this study synergistically integrated RSV-sustained release nanoparticles and a specially designed multifunctional hydrogel into a single system in a conveniently manipulable manner. This composite wound dressing material holds promise for promoting the healing of infected wounds and has potential applications in other complex wound treatments.

2.
Chemistry ; 28(16): e202104241, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-34936722

RESUMEN

High-nuclearity clusters resemble the closest model between the determination of atomically precise chemical species and the bulk metallic version thereof, and both impacts on a variety of applications, including catalysis, optics, sensors, and new energy sources. Our interest lies with the nanoclusters of the Group 11 (Cu, Ag, Au) metals stabilized by dichalcogenido and hydrido ligands. Herein, we describe superatoms formed by the clusters and their relationship with precursor hydrido clusters. Specifically, our concept seeks to demonstrate a possible correlation that exist between hydrido clusters (and nanoalloys) and the formation of superatoms, with the loss of hydrides and typically with release of H2 gas. These reactions appear to be internal self-redox reactions and require no additional reducing agent, but does seem to require a similar core structure. Knowledge of such processes could provide insight into how clusters grow and an understanding in bridging the atomically precise cluster - metal nanoparticle mechanism.

3.
Chemistry ; 27(58): 14444-14450, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34347317

RESUMEN

Lithium-sulfur (Li-S) batteries have attracted great attention due to their high theoretical energy density. The rapid redox conversion of lithium polysulfides (LiPS) is effective for solving the serious shuttle effect and improving the utilization of active materials. The functional design of the separator interface with fast charge transfer and active catalytic sites is desirable for accelerating the conversion of intermediates. Herein, a graphene-wrapped MnCO3 nanowire (G@MC) was prepared and utilized to engineer the separator interface. G@MC with active Mn2+ sites can effectively anchor the LiPS by forming the Mn-S chemical bond according to our theoretical calculation results. In addition, the catalytic Mn2+ sites and conductive graphene layer of G@MC could accelerate the reversible conversion of LiPS via the spontaneous "self-redox" reaction and the rapid electron transfer in electrochemical process. As a result, the G@MC-based battery exhibits only 0.038 % capacity decay (per cycle) after 1000 cycles at 2.0 C. This work affords new insights for designing the integrated functional interface for stable Li-S batteries.

4.
Nanotechnology ; 32(39)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34171854

RESUMEN

Supercapacitors, as promising energy storage candidates, are limited by their unsatisfactory anodes. Herein, we proposed a strategy to improve the electrochemical performance of iron oxide anodes by spinel-framework constraining. We have optimized the anode performance by adjusting the doping ratio of Fe (II/III) self-redox pairs. Structure and electronic state characterizations reveal that the NixFe3-xO4was composed of Fe (II/III) and Ni (II/III) pairs in lattice, ensuring a flexible framework for the reversible reaction of Fe (II/III). Typically, when the ratio of Fe (II/III) is 0.91:1 (Fe (II/III)-0.91/1), the NixFe3-xO4anode shows a remarkable electrochemical performance with a high specific capacitance of 1694 F g-1at the current density of 2 A g-1and capacitance retention of 81.58%, even at a large current density of 50 A g-1. In addition, the obtained material presents an ultra-stable electrochemical performance, and there is no observable degradation after 5000 cycles. Moreover, an assembled asymmetric supercapacitor of Ni-Co-S@CC//NixFe3-xO4@CC presents a maximum energy density of 136.82 Wh kg-1at the power density of 850.02 W kg-1. When the power density was close to 42 500 W kg-1, the energy density was still maintained 63.75 Wh kg-1. The study indicates that inherent performance of anode material can be improved by tuning the valence charge of active ions.

5.
ACS Appl Mater Interfaces ; 13(14): 16536-16544, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33793186

RESUMEN

The carbon-neutral photocatalytic CO2 reduction reaction (CO2RR) enables the conversion of CO2 into hydrocarbon fuels or value-added chemicals under mild conditions. Achieving high selectivity for the desired products of the CO2RR remains challenging. Herein, a self-redox strategy is developed to construct strong interfacial bonds between Ag nanoparticles and an ultrathin CoAl-layered double hydroxide (U-LDH) nanosheet support, where the surface hydroxyl groups associated with oxygen vacancies of U-LDH play a critical role in the formation of the interface structure. The supported Ag@U-LDH acts as a highly efficient catalyst for CO2 reduction, resulting in a high CO evolution rate of 757 µmol gcat-1 h-1 and a CO selectivity of 94.5% under light irradiation. Such a high catalytic selectivity may represent a new record among current photocatalytic CO2RR to CO systems. The Ag-O-Co interface bonding is confirmed by Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and FTIR CO2 adsorption studies. The in situ FTIR measurements indicate that the formation of the *COOH intermediate is accelerated and the mass transfer is improved during the CO2RR. Density functional theory calculations show that the Ag-O-Co interface reduces the formation energy of the *COOH intermediate and accumulates localized charge. Experimental and theoretical analysis collectively demonstrates that the strong interface bonding between Ag and U-LDH activates the interface structure as catalytically CO2RR active sites, effectively optimizing the binding energies with reacted intermediates and facilitating the CO2RR performance.

6.
ACS Biomater Sci Eng ; 5(5): 2587-2594, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33405764

RESUMEN

Herein, we present a novel, simple, and ultrasensitive electrochemical DNA (E-DNA) sensor based on hollow carbon spheres (HCS) decorated with polyaniline (PANI). A thiolated 21-mer oligonucleotide, characteristic of HBV DNA, is immobilized via electrodeposited gold nanoparticles on HCS-PANI. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) are used to characterize the electrochemical properties of the prepared nanocomposite. Scanning electron microscopy is employed to investigate the morphological texture of the fabricated modifier. An enhanced intrinsic signal of PANI is probed to evaluate the biosensing ability of the prepared modifier. The proposed biosensor allows for the detection of the target sequences of HBV DNA at a concentration as low as 10 fM (i.e., 109 DNA copies/mL). In addition, this biosensor demonstrated good capability to differentiate between the perfectly matched target oligonucleotide and three nucleotide-mismatched oligonucleotides. Furthermore, the HCS/PANI-based E-DNA sensor indicates highly sensitive detection of HBV DNA in real samples.

7.
Proc Natl Acad Sci U S A ; 115(11): 2676-2680, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483248

RESUMEN

Formation of natural diamonds requires the reduction of carbon to its bare elemental form, and pressures (P) greater than 5 GPa to cross the graphite-diamond transition boundary. In a study of shocked ferromagnesian carbonate at the Xiuyan impact crater, we found that the impact pressure-temperature (P-T) of 25-45 GPa and 800-900 °C were sufficient to decompose ankerite Ca(Fe2+,Mg)(CO3)2 to form diamond in the absence of another reductant. The carbonate self-reduced to diamond by concurrent oxidation of Fe2+ to Fe3+ to form a high-P polymorph of magnesioferrite, MgFe3+2O4 Discovery of the subsolidus carbonate self-reduction mechanism indicates that diamonds could be ubiquitously present as a dominant host for carbon in the Earth's lower mantle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA