Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 263: 116578, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39038398

RESUMEN

Peripheral nerve injury (PNI) poses a significant public health issue, often leading to muscle atrophy and persistent neuropathic pain, which can drastically impact the quality of life for patients. Electrical stimulation represents an effective and non-pharmacological treatment to promote nerve regeneration. Yet, the postoperative application of electrical stimulation remains a challenge. Here, we propose a fully biodegradable, self-powered nerve guidance conduit (NGC) based on dissolvable zinc-molybdenum batteries. The conduit can offer topographic guidance for nerve regeneration and deliver sustained electrical cues between both ends of a transected nerve stump, extending beyond the surgical window. Schwann cell proliferation and adenosine triphosphate (ATP) production are enhanced by the introduction of the zinc-molybdenum batteries. In rodent models with 10-mm sciatic nerve damage, the device effectively enhances nerve regeneration and motor function recovery. This study offers innovative strategies for creating biodegradable and electroactive devices that hold important promise to optimize therapeutic outcomes for nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Nervio Ciático , Zinc , Animales , Traumatismos de los Nervios Periféricos/terapia , Zinc/química , Nervio Ciático/fisiología , Nervio Ciático/lesiones , Ratas , Suministros de Energía Eléctrica , Molibdeno/química , Células de Schwann , Ratas Sprague-Dawley , Humanos , Regeneración Tisular Dirigida/instrumentación , Regeneración Tisular Dirigida/métodos , Técnicas Biosensibles , Implantes Absorbibles
2.
Small ; : e2402661, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813727

RESUMEN

Traffic lights play vital roles in urban traffic management systems, providing clear directional guidance for vehicles and pedestrians while ensuring traffic safety. However, the vast quantity of traffic lights widely distributed in the transportation system aggravates energy consumption. Here, a self-powered traffic light system is proposed through wind energy harvesting based on a high-performance fur-brush dish triboelectric nanogenerator (FD-TENG). The FD-TENG harvests wind energy to power the traffic light system continuously without needing an external power supply. Natural rabbit furs are applied to dish structures, due to their outstanding characteristics of shallow wear, high performance, and resistance to humidity. Also, the grid pattern of the dish structure significantly impacts the TENG outputs. Additionally, the internal electric field and the influences of mechanical and structural parameters on the outputs are analyzed by finite element simulations. After optimization, the FD-TENG can achieve a peak power density of 3.275 W m-3. The portable and miniature features of FD-TENG make it suitable for other natural environment systems such as forests, oceans, and mountains, besides the traffic light systems. This study presents a viable strategy for self-powered traffic lights, establishing a basis for efficient environmental energy harvesting toward big data and Internet of Things applications.

3.
Nanomicro Lett ; 16(1): 182, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668830

RESUMEN

Metal-halide perovskites are revolutionizing the world of X-ray detectors, due to the development of sensitive, fast, and cost-effective devices. Self-powered operation, ensuring portability and low power consumption, has also been recently demonstrated in both bulk materials and thin films. However, the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours, often reporting degradation of the detection performance. Here it is shown that self-powered direct X-ray detectors, fabricated starting from a FAPbBr3 submicrometer-thick film deposition onto a mesoporous TiO2 scaffold, can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss, demonstrating ultra-high operational stability and excellent repeatability. No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy, revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film. In addition, trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy-1 cm-3 at 0 V, an unprecedented value in the field of thin-film-based photoconductors and photodiodes for "hard" X-rays. Finally, prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.

4.
Small Methods ; : e2301735, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529746

RESUMEN

GaAs thin-film solar cells have high efficiency, reliability, and operational stability, making them a promising solution for self-powered skin-conformal biosensors. However, inherent device thickness limits suitability for such applications, making them uncomfortable and unreliable in flexural environments. Therefore, reducing the flexural rigidity becomes crucial for integration with skin-compatible electronic devices. Herein, this study demonstrated a novel one-step surface modification bonding methodology, allowing a streamlined transfer process of ultra-thin (2.3 µm thick) GaAs solar cells on flexible polymer substrates. This reproducible technique enables strong bonding between dissimilar materials (GaAs-polydimethylsiloxane, PDMS) without high external pressures and temperatures. The fabricated solar cell showed exceptional performance with an open-circuit voltage of 1.018 V, short-circuit current density of 20.641 mA cm-2, fill factor of 79.83%, and power conversion efficiency of 16.77%. To prove the concept, the solar cell is integrated with a skin-compatible organic electrochemical transistor (OECT). Competitive electrical outputs of GaAs solar cells enabled high current levels of OECT under subtle light intensities lower than 50 mW cm-2, which demonstrates a self-powered electrocardiogram sensor with low noise (signal-to-noise ratio of 32.68 dB). Overall, this study presents a promising solution for the development of free-form and comfortable device structures that can continuously power wearable devices and biosensors.

5.
Pacing Clin Electrophysiol ; 47(4): 542-550, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38407386

RESUMEN

The incidence and prevalence of cardiovascular diseases (CVD) have risen over the last few decades worldwide, resulting in a cost burden to healthcare systems and increasingly complex procedures. Among many strategies for treating heart diseases, treating arrhythmias using cardiac implantable electronic devices (CIEDs) has been shown to improve quality of life and reduce the incidence of sudden cardiac death. The battery-powered CIEDs have the inherent challenge of regular battery replacements depending upon energy usage for their programmed tasks. Nanogenerator-based  energy harvesters have been extensively studied, developed, and optimized continuously in recent years to overcome this challenge owing to their merits of self-powering abilities and good biocompatibility. Although these nanogenerators and others currently used in energy harvesters, such as biofuel cells (BFCs) exhibit an infinite spectrum of uses for this novel technology, their demerits should not be dismissed. Despite the emergence of Qi wireless power transfer (WPT) has revolutionized the technological world, its application in CIEDs has yet to be studied well. This review outlines the working principles and applications of currently employed energy harvesters to provide a preliminary exploration of CIEDs based on Qi WPT, which may be a promising technology for the next generation of functionalized CIEDs.


Asunto(s)
Desfibriladores Implantables , Humanos , Qi , Calidad de Vida , Corazón , Electrónica
6.
Sensors (Basel) ; 24(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257543

RESUMEN

The growing demand from the extended reality and wearable electronics market has led to an increased focus on the development of flexible human-machine interfaces (HMI). These interfaces require efficient user input acquisition modules that can realize touch operation, handwriting input, and motion sensing functions. In this paper, we present a systematic review of triboelectric-based contact localization electronics (TCLE) which play a crucial role in enabling the lightweight and long-endurance designs of flexible HMI. We begin by summarizing the mainstream working principles utilized in the design of TCLE, highlighting their respective strengths and weaknesses. Additionally, we discuss the implementation methods of TCLE in realizing advanced functions such as sliding motion detection, handwriting trajectory detection, and artificial intelligence-based user recognition. Furthermore, we review recent works on the applications of TCLE in HMI devices, which provide valuable insights for guiding the design of application scene-specified TCLE devices. Overall, this review aims to contribute to the advancement and understanding of TCLE, facilitating the development of next-generation HMI for various applications.

7.
Adv Sci (Weinh) ; 11(8): e2302172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37537662

RESUMEN

A supercapacitor is a potential electrochemical energy storage device with high-power density (PD) for driving flexible, smart, electronic devices. In particular, flexible supercapacitors (FSCs) have reliable mechanical and electrochemical properties and have become an important part of wearable, smart, electronic devices. It is noteworthy that the flexible electrode, electrolyte, separator and current collector all play key roles in overall FSCs. In this review, the unique mechanical properties, structural designs and fabrication methods of each flexible component are systematically classified, summarized and discussed based on the recent progress of FSCs. Further, the practical applications of FSCs are delineated, and the opportunities and challenges of FSCs in wearable technologies are proposed. The development of high-performance FSCs will greatly promote electricity storage toward more practical and widely varying fields. However, with the development of portable equipment, simple FSCs cannot satisfy the needs of integrated and intelligent flexible wearable devices for long durations. It is anticipated that the combining an FSC and a flexible power source such as flexible solar cells is an effective strategy to solve this problem. This review also includes some discussions of flexible self-powered devices.

8.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958768

RESUMEN

Growth in population and increased environmental awareness demand the emergence of new energy sources with low environmental impact. Lignocellulosic biomass is mainly composed of cellulose, lignin, and hemicellulose. These materials have been used in the energy industry for the production of biofuels as an eco-friendly alternative to fossil fuels. However, their use in the fabrication of small electronic devices is still under development. Lignocellulose-based triboelectric nanogenerators (LC-TENGs) have emerged as an eco-friendly alternative to conventional batteries, which are mainly composed of harmful and non-degradable materials. These LC-TENGs use lignocellulose-based components, which serve as electrodes or triboelectric active materials. These materials can be derived from bulk materials such as wood, seeds, or leaves, or they can be derived from waste materials from the timber industry, agriculture, or recycled urban materials. LC-TENG devices represent an eco-friendly, low-cost, and effective mechanism for harvesting environmental mechanical energy to generate electricity, enabling the development of self-powered devices and sensors. In this study, a comprehensive review of lignocellulosic-based materials was conducted to highlight their use as both electrodes and triboelectric active surfaces in the development of novel eco-friendly triboelectric nano-generators (LC-TENGs). The composition of lignocellulose and the classification and applications of LC-TENGs are discussed.


Asunto(s)
Agricultura , Biocombustibles , Biomasa , Celulosa
9.
ACS Appl Mater Interfaces ; 15(40): 47111-47124, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768923

RESUMEN

Recently, growing interest in self-powered devices has led to the invention of new energy conversion devices. Photo-thermoelectric generators (PTEGs) have rapidly developed for their ability to harvest both light and thermal energy, but these devices are overly dependent on the continuity of energy input and cannot sustain output in an emergency situation. In the current study, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/graphene oxide (GO)/graphene nanosheets (GNPs)/polyethylene glycol (PEG) phase-change composites (PCCs) were prepared with freeze-drying and vacuum-filling processes to acquire materials suitable for imparting energy storage characteristics to PTEGs. The melting and crystallization enthalpies of the PCCs fabricated based on the PEDOT:PSS/GO/GNP aerogels can reach 211.5 and 207.6 J g-1, respectively, which increase by nearly 5% compared with pure PEG, and the growth rate of thermal conductivity of the composites is as high as 262.7% (1.12 W m-1 K-1). Meanwhile, the excellent photothermal properties and high-temperature shape stability that pure PEG does not possess can also be imparted to PCCs by the aerogels. The PTEG assembled with PCCs and thermoelectric components can achieve a continuous output of over 1500 s after 300 s of light irradiation. After integrating the output of the device during the lamp on/off period, it is found that the total output of the device during the light-off period (8.4 V and 9.6 mW) can far exceed its total output during the light-on period (2.7 V and 4.4 mW). This work provides guidance for modulating the performance of PCCs and giving PTEGs the ability to operate under emergency or extremely harsh conditions and the prepared PTEGs are highly promising for practical use.

10.
Exploration (Beijing) ; 3(2): 20220061, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37324031

RESUMEN

Hydrovoltaic energy technology that generates electricity directly from the interaction of materials with water has been regarded as a promising renewable energy harvesting method. With the advantages of high specific surface area, good conductivity, and easily tunable porous nanochannels, two-dimensional (2D) nanomaterials have promising potential in high-performance hydrovoltaic electricity generation applications. Herein, this review summarizes the most recent advances of 2D materials for hydrovoltaic electricity generation, including carbon nanosheets, layered double hydroxide (LDH), and layered transition metal oxides and sulfides. Some strategies were introduced to improve the energy conversion efficiency and the output power of hydrovoltaic electricity generation devices based on 2D materials. The applications of these devices in self-powered electronics, sensors, and low-consumption devices are also discussed. Finally, the challenges and perspectives on this emerging technology are outlined.

11.
Small Methods ; 7(6): e2201659, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37093170

RESUMEN

The exploration of cost-effective multifunctional electrodes with high activity toward energy storage and conversion systems, such as self-powered alkaline water electrolysis, is very meaningful, although studies remain quite limited. Herein, a heterogeneous nickel-molybdenum (NiMo)-based electrode is fabricated for the first time as a trifunctional electrode for asymmetric supercapacitor (ASC), hydrogen evolution reaction, and oxygen evolution reaction. The trifunctional electrode consists of Ni4 Mo and MoO2 (denoted Ni4 Mo/MoO2 ) with hierarchical nanorod heterostructure and abundant heterogeneous nanointerfaces creating sufficient active sites and efficient charge transfer for achieving high performance self-power electrochemical devices. The ASC consists of the as-prepared Ni4 Mo/MoO2 positive electrode, showing a broad potential window of 1.6 V, and a maximum energy density of 115.6 Wh kg-1 , while the alkaline overall water splitting (OWS) assembled using the as-prepared Ni4 Mo/MoO2 as bifunctional catalysts only requires a low cell voltage of 1.48 V to achieve a current density of 10 mA cm-2 in aqueous alkaline electrolyte. Finally, by integrating the Ni4 Mo/MoO2 -based ASC and OWS devices, an aqueous self-powered OWS is assembled, which self-power the OWS to generate hydrogen gas and oxygen gas, verifying great potential of the as-prepared Ni4 Mo/MoO2 for sustainable and renewable energy storage and conversion system.

12.
ACS Biomater Sci Eng ; 9(5): 2070-2086, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-34735770

RESUMEN

Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body's continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life.


Asunto(s)
Suministros de Energía Eléctrica , Dispositivos Electrónicos Vestibles , Humanos
13.
Adv Mater ; 35(12): e2207199, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36502280

RESUMEN

The fast development of the Internet of Things (IoT) has driven an increasing consumer demand for self-powered gas sensors for real-time data collection and autonomous responses in industries such as environmental monitoring, workplace safety, smart cities, and personal healthcare. Despite intensive research and rapid progress in the field, most reported self-powered devices, specifically NO2 sensors for air pollution monitoring, have limited sensitivity, selectivity, and scalability. Here, a novel photovoltaic self-powered NO2 sensor is demonstrated based on axial p-i-n homojunction InP nanowire (NW) arrays, that overcome these limitations. The optimized innovative InP NW array device is designed by numerical simulation for insights into sensing mechanisms and performance enhancement. Without a power source, this InP NW sensor achieves an 84% sensing response to 1 ppm NO2 and records a limit of detection down to the sub-ppb level, with little dependence on the incident light intensity, even under <5% of 1 sun illumination. Based on this great environmental fidelity, the sensor is integrated into a commercial microchip interface to evaluate its performance in the context of dynamic environmental monitoring of motor vehicle exhaust. The results show that compound semiconductor nanowires can form promising self-powered sensing platforms suitable for future mega-scale IoT systems.

14.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36502209

RESUMEN

In the ongoing fourth industrial revolution, the internet of things (IoT) will play a crucial role in collecting and analyzing information related to human healthcare, public safety, environmental monitoring and home/industrial automation. Even though conventional batteries are widely used to operate IoT devices as a power source, these batteries have a drawback of limited capacity, which impedes broad commercialization of the IoT. In this regard, piezoelectric energy harvesting technology has attracted a great deal of attention because piezoelectric materials can convert electricity from mechanical and vibrational movements in the ambient environment. In particular, piezoelectric-based flexible energy harvesters can precisely harvest tiny mechanical movements of muscles and internal organs from the human body to produce electricity. These inherent properties of flexible piezoelectric harvesters make it possible to eliminate conventional batteries for lifetime extension of implantable and wearable IoTs. This paper describes the progress of piezoelectric perovskite material-based flexible energy harvesters for self-powered IoT devices for biomedical/wearable electronics over the last decade.


Asunto(s)
Compuestos de Calcio , Internet de las Cosas , Humanos , Óxidos , Prótesis e Implantes
15.
Adv Mater ; 34(50): e2205881, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36189858

RESUMEN

Gas therapy is an emerging technology for improving cancer therapy with high efficiency and low side effects. However, due to the existence of the gatekeeper of the blood-brain barrier (BBB) and the limited availability of current drug delivery systems, there still have been no reports on gas therapy for intracranial neuroglioma. Herein, an integrated, self-powered, and wirelessly controlled gas-therapy system is reported, which is composed of a self-powered triboelectric nanogenerator (TENG) and an implantable nitric oxide (NO) releasing device for intracranial neuroglioma therapy. In the system, the patient self-driven TENG converts the mechanical energy of body movements into electricity as a sustainable and self-controlled power source. When delivering energy to light a light-emitting diode in the implantable NO releasing device via wireless control, the encapsulated NO donor s-nitrosoglutathione (GSNO) can generate NO gas to locally kill the glioma cells. The efficacy of the proof-of-concept system in subcutaneous 4T1 breast cancer model in mice and intracranial glioblastoma multiforme in rats is verified. This self-powered gas-therapy system has great potential to be an effective adjuvant treatment modality to inhibit tumor growth, relapse, and invasion via teletherapy.


Asunto(s)
Nanotecnología , Óxido Nítrico , Ratas , Ratones , Animales , Recurrencia Local de Neoplasia , Suministros de Energía Eléctrica , Electricidad
16.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957283

RESUMEN

Magneto-mechano-electric (MME) composite devices have been used in energy harvesting and magnetic field sensing applications due to their advantages including their high-performance, simple structure, and stable properties. Recently developed MME devices can convert stray magnetic fields into electric signals, thus generating an output power of over 50 mW and detecting ultra-tiny magnetic fields below pT. These inherent outstanding properties of MME devices can enable the development of not only self-powered energy harvesters for internet of thing (IoT) systems but also ultra-sensitive magnetic field sensors for diagnosis of human bio-magnetism or others. This manuscript provides a brief overview of recently reported high-performance MME devices for energy harvesting and magnetic sensing applications.


Asunto(s)
Electricidad , Campos Magnéticos , Endrín/análogos & derivados , Humanos , Fenómenos Físicos
17.
Adv Mater ; 34(40): e2205369, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35986663

RESUMEN

Accurate and continuous pressure signal detection without external power supply is a key technology to realize the miniaturization of wearable electronic equipment, the internet of things, and artificial intelligence. However, it is difficult to be achieved by using current sensor technologies. Here, a new one-body strategy, i.e., zinc-ion battery pressure (ZIB-P) sensor technology, which designs the rechargeable solid-state ZIB itself as a flexible pressure sensor is reported. In the device, an isolation layer is introduced into the sandwich configuration solid-state battery to realize the change of device internal resistance by pressure during the transformation of the mechanical signal to the electrical signal. This battery pressure sensor possesses good flexibility, fast response/recovery time (76.0/88.0 ms), stable long-term response, excellent cycle stability (100 000 times), and wide pressure detection range (2.0 to 3.68 × 105  Pa). Especially, the excellent charge-discharge performance in the ZIB-P sensor endows it with the real-time detection ability of human vital signs (pulse, limb movement, etc.) and ultrahigh stability without degradation even under 100 000 times pressure stimulation. The ZIB-P sensor strategy provides a new solution for the future development of miniaturized wearable electronic devices.


Asunto(s)
Dispositivos Electrónicos Vestibles , Zinc , Inteligencia Artificial , Suministros de Energía Eléctrica , Frecuencia Cardíaca , Humanos
18.
Adv Mater ; 34(35): e2204363, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35817411

RESUMEN

Silicon carbide (SiC), one of the third-generation semiconductor materials with excellent electrical and optoelectronic properties, is ideal for high light-sensing performance. Here, a self-powered SiC ultraviolet (UV) photodetector (PD) is constructed with wider applicability and higher commercialization potential. The great performance of the PD is realized by a remarkable photoinduced dynamic Schottky effect derived from the symbiotic modulation of Schottky and Ohmic contact. Using the pyro-phototronic effect that exists in the N-doped 4H-SiC single crystal PDs, a fast pyroelectric response time of 0.27 s is achieved, which is almost ten times shorter than that obtained from the steady-state signal under UV illumination. The maximal transient photoresponsivity reaches 9.12 nA mW-1 , which is ≈20% higher than the conventional photoelectric signal. Moreover, different regions of the 4H-SiC centimeter-scale chip output distinct signals under UV illumination, demonstrating efficient optical imaging and information transmission capabilities of this device. This work not only reveals the fundamental optoelectronic physics lying in this vital third-generation semiconductor, but also sheds light on its potential photosensing applications for large-scale commercialization.

19.
Herzschrittmacherther Elektrophysiol ; 33(2): 224-231, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35377021

RESUMEN

BACKGROUND: Heart disease and atrial fibrillation are the leading causes of death worldwide. Patient morbidity and mortality associated with cardiovascular disease can be reduced by more accurate and continuous diagnostic and therapeutic tools provided by cardiovascular implantable electronic devices (CIEDs). OBJECTIVES: Long-term operation of CIEDs continues to be a challenge due to limited battery life and the associated risk of device failure. To overcome this issue, new approaches for autonomous battery supply are being investigated. RESULTS: Here, the state of the art in CIED power supply is presented and an overview of current strategies for autonomous power supply in the cardiovascular field is given, using the body as a sustainable energy source. Finally, future challenges and potentials as well as advanced features for CIEDs are discussed. CONCLUSION: CIEDs need to fulfil more requirements for diagnostic and telemetric functions, which leads to higher energy requirements. Ongoing miniaturization and improved sensor technologies will help in the development of new devices.


Asunto(s)
Fibrilación Atrial , Desfibriladores Implantables , Cardiopatías , Marcapaso Artificial , Fibrilación Atrial/terapia , Predicción , Cardiopatías/terapia , Humanos
20.
Adv Mater ; 34(21): e2108560, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35048436

RESUMEN

Energy harvesting modules play an increasingly important role in the development of autonomous self-powered microelectronic devices. MXenes (i.e., 2D transition metal carbide/nitride) have recently emerged as promising candidates for energy applications due to their excellent electronic conductivity, large specific surface area, and tunable properties. Herein, a perspective on using MXenes to harvest energy from various sources in the environment is presented. First, the characteristics of MXenes that facilitate energy capturing are systematically introduced and the preparation strategies of MXenes and their derived nanostructures tailored toward such applications are summarized. Subsequently, the harvesting mechanism of different energy sources (e.g., solar energy, thermoelectric energy, triboelectric energy, piezoelectric energy, salinity-gradient energy, electrokinetic energy, ultrasound energy, and humidity energy) are discussed. Then, the recent progress of MXene-based nanostructures in energy harvesting, as well as their applications, is introduced. Finally, opinions on the existing challenges and future directions of MXene-based nanostructure for energy harvesting are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA