Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Control Release ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276800

RESUMEN

Organic nanocrystals, particularly those composed of conjugated molecules, hold immense potential for various applications. However, their practical utility is often hindered by the challenge of achieving stable aqueous dispersions, which are essential for biological compatibility and effective delivery. This study introduces a novel and versatile strategy for preparing stable aqueous organic nanocrystals using a modified reprecipitation method. We demonstrate the broad applicability of this approach by successfully preparing a diverse library of nanocrystals from 27 conjugated molecules. Our findings reveal a charge-balanced aggregation mechanism for nanocrystal formation, highlighting the crucial role of surface charge in controlling particle size and stability. Based on this mechanism, we establish a comprehensive molecular combination strategy that directly links molecular properties to colloidal behaviour, enabling the straightforward prediction and preparation of stable aqueous dispersions without the need for excipients. This strategy provides a practical workflow for tailoring the functionality of these nanocrystals for a wide range of applications. To illustrate their therapeutic potential, we demonstrate the enhanced efficacy of these nanocrystals in treating acute ulcerative colitis, myocardial ischemia/reperfusion injury, and cancer in mouse models. This work paves the way for developing next-generation nanomaterials with tailored functionalities for diverse biomedical applications.

2.
Nano Lett ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39270053

RESUMEN

Elevated production of extracellular matrix (ECM) in tumor stroma is a critical obstacle for drug penetration. Here we demonstrate that ATP-citrate lyase (ACLY) is significantly upregulated in cancer-associated fibroblasts (CAFs) to produce tumor ECM. Using a self-assembling nanoparticle-design approach, a carrier-free nanoagent (CFNA) is fabricated by simply assembling NDI-091143, a specific ACLY inhibitor, and doxorubicin (DOX) or paclitaxel (PTX), the first-line chemotherapeutic drug, via multiple noncovalent interactions. After arriving at the CAFs-rich tumor site, NDI-091143-mediated ACLY inhibition in CAFs can block the de novo synthesis of fatty acid, thereby dampening the fatty acid-involved energy metabolic process. As the lack of enough energy, the energetic CAFs will be in a dispirited state that is unable to produce abundant ECM, thereby significantly improving drug perfusion in tumors and enhancing the efficacy of chemotherapy. Such a simple drug assembling strategy aimed at CAFs' ACLY-mediated metabolism pathway presents the feasibility of stromal matrix reduction to potentiate chemotherapy.

3.
Molecules ; 29(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39202916

RESUMEN

The diselenide bond has attracted intense interest for drug delivery systems (DDSs) for tumor chemotherapy, owing to it possessing higher redox sensitivity than the disulfide one. Various redox-responsive diselenide-containing carriers have been developed for chemotherapeutics delivery. However, the premature drug leakage from these DDSs was significant enough to cause toxic side effects on normal cells. Here, a pH/redox co-triggered degradable polyprodrug was designed as a drug self-delivery system (DSDS) by incorporating drug molecules as structural units in the polymer main chains, using a facile one-pot two-step approach. The proposed PDOX could only degrade and release drugs by breaking both the neighboring acid-labile acylhydrazone and the redox-cleavable diselenide conjugations in the drug's structural units, triggered by the higher acidity and glutathione (GSH) or reactive oxygen species (ROS) levels in the tumor cells. Therefore, a slow solubility-controlled drug release was achieved for tumor-specific chemotherapy, indicating promising potential as a safe and efficient long-acting DSDS for future tumor treatment.


Asunto(s)
Antineoplásicos , Oxidación-Reducción , Profármacos , Concentración de Iones de Hidrógeno , Humanos , Profármacos/química , Profármacos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Liberación de Fármacos , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Polímeros/química , Glutatión/química , Glutatión/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación
4.
J Colloid Interface Sci ; 678(Pt A): 494-502, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39214001

RESUMEN

Corrosion of steel in the marine environment greatly reduces their service life. Polymeric coatings are the most popular anticorrosion technology, but seawater penetration cannot be prohibited because of the distinct stacking structure of the macromolecular chains. In this context, a novel anticorrosive hyperbranched polyurethane-based coating with dopamine (DOPA) at the terminals is prepared herein. The built-in DOPA is able to capture the iron ions released from the corroded substrate and form DOPA-Fe3+ complexation, which further cooperates with the surrounding seawater and imparts self-passivation, self-delivery and self-healing capabilities to the coating. Under the joint action of these measures, the corrosion of tinplate (serving as the steel model) is reduced to a record-low level (corrosion current = 1 × 10-9 A cm-2, corrosion rate = 1 × 10-5 mm year-1). Conceptually, the present dynamic active anticorrosion strategy greatly outperforms the traditional static passive approach, and turns the unfavorable but unavoidable seawater into a favorable factor, which paves the way for the development of long-lasting marine coatings.

5.
ACS Appl Mater Interfaces ; 16(26): 33169-33181, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38915234

RESUMEN

Inducing immunogenic cell death (ICD) is a promising strategy for cancer immunotherapy. Shikonin (SHK), a naphthoquinone compound from Lithospermum erythrorhizon, can stimulate antitumor immunity by inducing ICD. Nevertheless, the immunogenicity of tumor cells killed by SHK is weak. Endoplasmic reticulum (ER) stress is an important intracellular pathway of the ICD effect. Curcumin (CUR) can directly induce ER stress by disrupting Ca2+ homeostasis, which might enhance SHK-induced ICD effect. A self-delivery ICD effect nanobooster (CS-PEG NPs) was developed by the self-assembly of SHK (ICD inducer) and CUR (ICD enhancer) with the assistance of DSPE-PEG2K for cancer chemoimmunotherapy. CS-PEG NPs possessed effective CT26 tumor cell cellular uptake and tumor accumulation ability. Moreover, enhanced cytotoxicity against tumor cells and apoptosis promotion were achieved due to the synergistic effect of CUR and SHK. Notably, CS-PEG NPs induced obvious Ca2+ homeostasis disruption, ER stress, and ICD effect. Subsequently, the neoantigens produced by the robust ICD effect in vivo promoted dendritic cell maturation, which further recruited and activated cytotoxic T lymphocytes. Superior antitumor efficacy and systemic antitumor immunity were observed in the CT26-bearing BALB/c mouse model without side effects in major organs. This study offers a promising self-delivery nanobooster to induce strong ICD effect and antitumor immunity for cancer chemoimmunotherapy.


Asunto(s)
Curcumina , Estrés del Retículo Endoplásmico , Muerte Celular Inmunogénica , Inmunoterapia , Ratones Endogámicos BALB C , Naftoquinonas , Animales , Naftoquinonas/química , Naftoquinonas/farmacología , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones , Curcumina/química , Curcumina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Línea Celular Tumoral , Nanopartículas/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Femenino
6.
Adv Healthc Mater ; 13(17): e2303896, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38551494

RESUMEN

Glutathione (GSH) depletion-induced ferroptosis has emerged as a promising treatment for malignant cancer. It works by inactivating glutathione peroxidase 4 (GPX4) and facilitating lipid peroxidation. However, effectively delivering inducers and depleting intracellular GSH remains challenging due to the short half-lives and high hydrophobicity of small-molecule ferroptosis inducers. These inducers often require additional carriers. Herein, diselenide-containing polymers can consume GSH to induce ferroptosis for pancreatic cancer therapy. The diselenide bonds are controllably built into the backbone of the polycarbonate with a targeting peptide CRGD (Cys-Arg-Gly-Asp), which allows for self-assembly into stable nanoparticles (denoted CRNSe) for self-delivery. Significantly, at a concentration of 12 µg mL-1, CRNSe binds to the active site cysteine of GSH resulting in a thorough depletion of GSH. In contrast, the disulfide-containing analog only causes a slight decrease in GSH level. Moreover, the depletion of GSH inactivates GPX4, ultimately inducing ferroptosis due to the accumulation of lipid peroxide in BxPC-3 cells. Both in vitro and in vivo studies have demonstrated that CRNSe exhibits potent tumor suppressive ability with few side effects on normal tissue. This study validates the anti-tumor mechanism of diselenide-containing polymers in addition to apoptosis and also provides a new strategy for inherently inducing ferroptosis in cancer therapy.


Asunto(s)
Ferroptosis , Glutatión , Ferroptosis/efectos de los fármacos , Humanos , Glutatión/metabolismo , Animales , Línea Celular Tumoral , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Polímeros/química , Polímeros/farmacología , Ratones Desnudos , Cemento de Policarboxilato/química , Oligopéptidos/química , Oligopéptidos/farmacología , Ratones Endogámicos BALB C
7.
Mol Pharm ; 21(3): 1537-1547, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38356224

RESUMEN

Mitochondria-targeting photothermal therapy could significantly enhance the tumor cell killing effect. However, since therapeutic reagents need to overcome a series of physiological obstacles to arrive at mitochondria accurately, precise mitochondria-targeting photothermal therapy still faces great challenges. In this study, we developed a self-delivery nanoplatform that specifically targeted the mitochondria of tumor cells for precise photothermal therapy. Photothermal agent IR780 was encapsulated by amphiphilic apoptotic peptide KLA with mitochondria-targeting ability to form nanomicelle KI by self-assembly through hydrophilic and hydrophobic interactions. Subsequently, negatively charged tumor-targeting polymer HA was coated on the surface of KI through electrostatic interactions, to obtain tumor mitochondria-targeting self-delivery nanoplatform HKI. Through CD44 receptor-mediated recognition, HKI was internalizated by tumor cells and then disassembled in an acidic environment with hyaluronidase in endosomes, resulting in the release of apoptotic peptide KLA and photothermal agent IR780 with mitochondria anchoring capacity, which achieved precise mitochondria guidance and destruction. This tumor mitochondria-targeting self-delivery nanoplatform was able to effectively deliver photothermal agents and apoptotic peptides to tumor cell mitochondria, resulting in precise destruction to mitochondria and enhancing tumor cell inhibition at the subcellular organelle level.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Péptidos , Mitocondrias , Apoptosis , Nanopartículas/química , Línea Celular Tumoral , Fototerapia
8.
Adv Sci (Weinh) ; 11(15): e2309204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38239040

RESUMEN

The chemo-regulation abilities of chemotherapeutic medications are appealing to address the low immunogenicity, immunosuppressive lactate microenvironment, and adaptive immune resistance of colorectal cancer. In this work, the proteolysis targeting chimera (PROTAC) of BRD4 (dBET57) is found to downregulate colorectal cancer glycolysis through the transcription inhibition of c-Myc, which also inhibits the expression of programmed death ligand 1 (PD-L1) to reverse immune evasion and avoid adaptive immune resistance. Based on this, self-delivery nano-PROTACs (designated as DdLD NPs) are further fabricated by the self-assembly of doxorubicin (DOX) and dBET57 with the assistance of DSPE-PEG2000. DdLD NPs can improve the stability, intracellular delivery, and tumor targeting accumulation of DOX and dBET57. Meanwhile, the chemotherapeutic effect of DdLD NPs can efficiently destroy colorectal cancer cells to trigger a robust immunogenic cell death (ICD). More importantly, the chemo-regulation effects of DdLD NPs can inhibit colorectal cancer glycolysis to reduce the lactate production, and downregulate the PD-L1 expression through BRD4 degradation. Taking advantages of the chemotherapy and chemo-regulation ability, DdLD NPs systemically activated the antitumor immunity to suppress the primary and metastatic colorectal cancer progression without inducing any systemic side effects. Such self-delivery nano-PROTACs may provide a new insight for chemotherapy-enabled tumor immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias Colorrectales , Humanos , Quimera Dirigida a la Proteólisis , Proteínas Nucleares , Línea Celular Tumoral , Factores de Transcripción , Doxorrubicina/uso terapéutico , Doxorrubicina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Inmunoterapia , Lactatos/farmacología , Microambiente Tumoral , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular
9.
Small ; : e2309994, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095445

RESUMEN

A systemic treatment strategy is urgently demanded to suppress the rapid growth and easy metastasis characteristics of breast cancer. In this work, a chimeric peptide-engineered self-delivery nanomedicine (designated as ChiP-CeR) for photodynamic-triggered breast cancer immunotherapy by macrophage polarization. Among these, ChiP-CeR is composed of the photosensitizer of chlorine e6 (Ce6) and the TLR7/8 agonist of lmiquimod (R837), which is further modified with tumor matrix targeting peptide (Fmoc-K(Fmoc)-PEG8 -CREKA. ChiP-CeR is preferred to actively accumulate at the tumor site via specific recognition of fibronectin, which can eradicate primary tumor growth through photodynamic therapy (PDT). Meanwhile, the destruction of primary tumors would trigger immunogenic cell death (ICD) effects to release high-mobility group box-1(HMGB1) and expose calreticulin (CRT). Moreover, ChiP-CeR can also polarize M2-type tumor-associated macrophages (TAMs) into M1-type TAMs, which can activate T cell antitumor immunity in combination with ICD. Overall, ChiP-CeR possesses superior antitumor effects against primary and lung metastatic tumors, which provide an applicable nanomedicine and a feasible strategy for the systemic management of metastatic breast cancer.

10.
Int J Nanomedicine ; 18: 6367-6377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954452

RESUMEN

Purpose: Molecular targeted therapy is one of the most pivotal strategies in the treatment of non-small cell lung cancer, yet its curative effect is severely compromised by the poor aqueous solubility, low bioavailability and inadequate tumor accumulation of targeted agents. To enhance the efficacy of targeted agents, we demonstrate a novel self-assemble amphiphilic molecule based on erlotinib as an effective nanodrug for anti-cancer treatment. Methods: An amphiphilic molecule composed of hydrophobic erlotinib and hydrophilic biotin block was synthesized and characterized by nuclear magnetic resonance (NMR) as well as high-resolution mass spectrometry (HRMS). Then, nanoassemblies of the amphiphilic molecules are formulated by using nanoprecipitation method. Subsequently, the size, morphology, cell uptake, the anticancer activity and in vivo distribution of the newly constructed erlotinib nanodrug were systematically assessed by some methods, including transmission electron microscopy (TEM), dynamic light-scattering (DLS), flow cytometry, in vivo imaging system etc. Results: We developed a novel nanoformulation of erlotinib, which possesses a high drug loading of 45%. With the features of well-defined structure and small size, the obtained nanodrug could be effectively accumulated in tumor sites and rapidly internalized by cancer cells. Finally, the erlotinib-based nanoformulation showed considerably better anticancer activity compared to free erlotinib both in vitro and in vivo. Moreover, the nanodrug displayed great tolerability. Conclusion: Combining the advantageous features of both nanotechnology and self-assemble, this novel erlotinib nanomedicine constitutes a promising therapeutic candidate for cancer treatment. This study also underlines the potential use of amphiphilic molecule for improving drug efficacy as well as reducing drug toxicity, which could become a general strategy for the preparation of nanodrugs of active agents.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Clorhidrato de Erlotinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Nanomedicina , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología
11.
ACS Nano ; 17(18): 18227-18239, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37668306

RESUMEN

Nanoprecipitation, which is achieved through the diffusion and precipitation of drug molecules in blended solvent and antisolvent phases, is a classic route for constructing nanodrugs (NDs) and previously directed by diffusion-controlled theory. However, the diffusion-controlled mechanism is out of date in the recent preparation of self-delivery supramolecular NDs (SDSNDs), characterized by the construction of drug nanoparticles through supramolecular interactions in the absence of carriers and surfactants. Herein, a "reaction"-like complement, contributed from supramolecular interactions, is proposed for the preparation of naphthoquinone SDSNDs. Different from the diffusion-controlled process, the formation rate of SDSNDs via the "reaction"-like process is almost constant and highly dependent on the supramolecular interaction-determined Gibbs free energy of molecular binding. Thus, the formation rate and drug availability of SDSNDs are greatly improved by engineering the supramolecular interactions, which facilitates the preparation of SDSNDs with expected sizes, components, and therapeutic functions. As a deep understanding of supramolecular-interaction-involved nanoprecipitation, the current "reaction"-like protocol not only provides a theoretical supplement for classic nanoprecipitation but also highlights the potential of nanoprecipitation in shaping self-assembled, coassembled, and metal-ion-associated SDSNDs.

12.
J Control Release ; 361: 792-802, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595665

RESUMEN

Drug self-delivery systems (DSDSs) have been extensively exploited to enhance drug loading capacity and avoid excipient-related toxicity issues. However, deficient tumor targeting, inferior tumor permeability, prominent burst release, and nonspecific subcellular distribution remain major obstacles. Herein, we reported a ROS-responsive amphiphilic prodrug (CPT-S-NO) synthesized by the conjugation of zwitterionic tertiary amine-oxide (TAO) moiety and hydrophobic camptothecin (CPT) through a thioether linkage, which formed a nanoparticulate DSDS in an aqueous solution. CPT-S-NO, compared with CPT-11 and the water-soluble TAO-modified CPT prodrug (CPT-NO), exhibited prolonged blood circulation, enhanced tumor accumulation, deep tumor penetration, efficient mitochondrial targeting, and ROS-activated drug release to induce mitochondrial dysfunction, corporately conducing to the superior antitumor efficacy in vivo. This TAO decoration strategy promises potential applications in designing multipotent DSDSs for various drugs.


Asunto(s)
Nanopartículas , Neoplasias , Profármacos , Humanos , Especies Reactivas de Oxígeno , Neoplasias/tratamiento farmacológico , Mitocondrias , Óxidos , Agua , Nanopartículas/uso terapéutico
13.
ACS Appl Bio Mater ; 6(7): 2816-2825, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37326439

RESUMEN

Inflammation activation is accompanied by tumor growth, migration, and differentiation. Photodynamic therapy (PDT) can trigger an inflammatory response to cause negative feedback of tumor inhibition. In this paper, a feedback-elevated antitumor amplifier is developed by constructing self-delivery nanomedicine for PDT and cascade anti-inflammation therapy. Based on the photosensitizer chlorin e6 (Ce6) and COX-2 inhibitor indomethacin (Indo), the nanomedicine is prepared via molecular self-assembly technology without additional drug carriers. It is exciting that the optimized nanomedicine (designated as CeIndo) possesses favorable stability and dispersibility in the aqueous phase. Moreover, the drug delivery efficiency of CeIndo is significantly improved, which could be effectively accumulated at the tumor site and internalized by tumor cells. Importantly, CeIndo not only exhibits a robust PDT efficacy on tumor cells but also drastically decreases the PDT-induced inflammatory response in vivo, resulting in feedback-elevated tumor inhibition. By virtue of the synergistic effect of PDT and cascade inflammation suppression, CeIndo tremendously reduces tumor growth and leads to a low side effect. This study presents a paradigm for the development of codelivery nanomedicine for enhanced tumor therapy through inflammation suppression.


Asunto(s)
Fotoquimioterapia , Humanos , Fotoquimioterapia/efectos adversos , Fotoquimioterapia/métodos , Nanomedicina , Retroalimentación , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Inflamación/tratamiento farmacológico
14.
Acta Biomater ; 166: 496-511, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230439

RESUMEN

The effectiveness of phototheranostics induced immunotherapy is still hampered by limited light penetration depth, the complex immunosuppressive tumor microenvironment (TME) and the low efficiency of immunomodulator drug delivery. Herein, self-delivery and TME responsive NIR-II phototheranostic nanoadjuvants (NAs) were fabricated to suppress the growth and metastasis of melanoma through the integration of photothermal-chemodynamic therapy (PTT-CDT) and immune remodeling. The NAs were constructed by the self-assembly of ultrasmall NIR-II semiconducting polymer dots and the toll-like receptor agonist resiquimod (R848) utilizing manganese ions (Mn2+) as coordination nodes. Under acidic TME, the NAs responsively disintegrated and released therapeutic components, which enable NIR-II fluorescence/photoacoustic/magnetic resonance imaging-guided tumor PTT-CDT. Moreover, the synergistic treatment of PTT-CDT could induce significant tumor immunogenic cell death and evoke highly efficacious cancer immunosurveillance. The released R848 stimulated the maturation of dendritic cells, which both amplified the antitumor immune response by modulating and remodeling the TME. The NAs present a promising integration strategy of polymer dot-metal ion coordination and immune adjuvants for precise diagnosis and amplified anti-tumor immunotherapy against deep-seated tumors. STATEMENT OF SIGNIFICANCE: The efficiency of phototheranostics induced immunotherapy is still limited by insufficient light penetration depth, low immune response and the complex immunosuppressive tumor microenvironment (TME). In order to improve the efficacy of immunotherapy, self-delivery NIR-II phototheranostic nanoadjuvants (PMR NAs) were successfully fabricated via the facile coordination self-assembly of ultra-small NIR-II semiconducting polymer dots and toll-like receptor agonist resiquimod (R848) utilizing manganese ions (Mn2+) as coordination nodes. PMR NAs not only enable TME responsive cargo release and NIR-II fluorescence/photoacoustic/magnetic resonance imaging mediated precise localization of tumors, but also achieve synergistic photothermal-chemodynamic therapy, evoking an effective anti-tumor immune response by ICD effect. The responsively released R848 could further amplify the efficiency of immunotherapy by reversing and remodeling the immunosuppressive tumor microenvironment, thereby effectively inhibiting tumor growth and lung metastasis.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Manganeso , Polímeros , Neoplasias/terapia , Metales , Inmunoterapia/métodos , Imagen Multimodal , Receptores Toll-Like , Nanopartículas/uso terapéutico , Microambiente Tumoral , Línea Celular Tumoral
15.
Adv Mater ; 35(30): e2301409, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37084041

RESUMEN

Small interfering RNA (siRNA) holds immense promise for suppressing gene expression and treating various life-threatening diseases, including cancer. However, efficient delivery and lysosomal escape remain critical challenges that hinder the therapeutic effectiveness of siRNA. Herein, cationic photosensitizer (NB-Br) is grafted onto polo-like kinase 1 (PLK1) siRNA to form an amphiphilic siRNA-photosensitizer conjugate (siPLK1-NB), which can self-assemble into nanoparticles (siPLK1-NB NPs) via electrostatic attraction. Notably, siPLK1-NB NPs exhibit rapid and efficient cell endocytosis, as well as outstanding tumor-targeting property in multiple tumor-bearing mice models. When siPLK1-NB NPs are located inside tumor cell lysosomes, the generated reactive oxygen species (ROS) after photoactivation can disrupt the lysosome membrane structure and facilitate siRNA escape from lysosomes. Under light irradiation, siPLK1-NB NPs can downregulate PLK1 expression and induce photodynamic killing, effectively inhibiting tumor cell growth both in vitro and in vivo. Consequently, this study provides a novel design strategy for carrier-free siRNA delivery systems. As far as it is known, this is the first report of a carrier-free siRNA delivery system based on electrostatic attraction.


Asunto(s)
Nanopartículas , Fármacos Fotosensibilizantes , Animales , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Electricidad Estática , Línea Celular Tumoral , Terapia Genética , Nanopartículas/química
16.
J Control Release ; 357: 460-471, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37068523

RESUMEN

Immune checkpoint blockade (ICB) has shown significant clinical success, yet its responses can vary due to immunosuppressive tumor microenvironments. To enhance antitumor immunity, combining ICB therapy with tumor metabolism reprogramming may be a promising strategy. In this study, we developed a photodynamic immunostimulant called BVC aiming to boost immune recognition and prevent immune escape for metastatic tumor eradication by reprogramming glutamine metabolism. BVC, a carrier free self-assembled nanoparticle, comprises a photosensitizer (chlorin e6), an ASCT2 inhibitor (V9302) and a PD1/PDL1 blocker (BMS-1), offering favorable stability and enhanced drug delivery efficiency. The potent photodynamic therapy (PDT) capability of BVC is attributed to its regulation of glutamine metabolism, which influences the redox microenvironment within tumor tissues. By targeting ASCT2-mediated glutamine metabolism, BVC inhibits glutamine transport and GSH synthesis, leading to the upregulation of Fas and PDL1. Additionally, BVC-mediated PDT induces immunogenic cell death, triggering a cascade of immune responses. Consequently, BVC not only enhances immune recognition between CD8+ T cells and Fas-overexpressing tumor cells but also reduces tumor cell immune escape through PD1/PDL1 blockade, significantly benefiting metastatic tumor eradication. This study paves a novel approach for multi-synergistic tumor treatment.


Asunto(s)
Glutamina , Fotoquimioterapia , Linfocitos T CD8-positivos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/uso terapéutico , Inmunoterapia , Microambiente Tumoral
17.
Acta Biomater ; 158: 599-610, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603734

RESUMEN

Reactive oxygen species (ROS) generated during photodynamic therapy (PDT) can induce autophagy to protect tumor cell from PDT-induced apoptosis. In this work, a self-delivery autophagy regulator (designated as CeCe) is developed for autophagy promotion sensitized PDT against tumor. Briefly, CeCe is prepared by the assembly of a photosensitizer of chlorin e6 (Ce6) and autophagy promoter of celastrol. By virtue of intermolecular interactions, Ce6 and celastrol are able to self-assemble into nanomedicine with great photodynamic performance and autophagy regulation capacity. Under light irradiation, CeCe would produce ROS in tumor cells to amplify the oxidative stress and promote cell autophagy. As a result, CeCe exhibits an enhanced photo toxicity by inducing autophagic cell death. In vivo experiments indicate that CeCe can predominantly accumulate in tumor tissue for a robust PDT. Moreover, CeCe has a superior therapeutic efficiency compared to monotherapy and combined treatment of Ce6 and celastrol, suggesting a synergistic antitumor effect of PDT and autophagy promotion. This self-delivery nanomedicine may advance the development of the co-delivery nanoplatform to improve the antitumor efficacy of PDT by promoting autophagy. STATEMENT OF SIGNIFICANCE: Autophagy is a "double-edged sword" in cellular homeostasis and metabolism, which can promote tumor progression but also induce an unknown impact on tumor inhibition. In this work, a self-delivery autophagy regulator (designated as CeCe) was developed for autophagy promotion sensitized photodynamic therapy (PDT). By virtue of intermolecular interactions, Ce6 and celastrol were found to self-assemble into stable CeCe without drug excipients, which exhibited great photodynamic performance and autophagy regulation capacity. In vitro and in vivo findings demonstrated a superior tumor suppression ability of CeCe over the monotherapy as well as the combined treatment of Ce6 and celastrol, suggesting a synergistic antitumor efficacy by PDT and autophagy promotion.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Especies Reactivas de Oxígeno/metabolismo , Retroalimentación , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Autofagia , Porfirinas/farmacología , Nanopartículas/uso terapéutico
18.
Adv Healthc Mater ; 12(10): e2202769, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36538727

RESUMEN

Drug self-delivery systems (DSDSs) offer new ways to create novel drug delivery systems (DDSs). In typical DSDSs, therapeutic reagents are not considered passive cargos but active delivery agents of actionable targets. As an advanced drug delivery strategy, DSDSs with positive cooperativity of both free drugs and nanocarriers exhibit the clear merits of unprecedented drug-loading capacity, minimized systemic toxicity, and flexible preparation of nanoscale deliverables for passive targeted therapy. This review highlights the recent advances and future trends in DSDSs on the basis of two differently constructed structures: covalent and noncovalent bond-based DSDSs. Specifically, various chemical and architectural designs, fabrication strategies, and responsive and functional features are comprehensively discussed for these two types of DSDSs. In addition, additional comments on the current development status of DSDSs and the potential applications of their molecular designs are presented in the corresponding discussion. Finally, the promising potential of DSDSs in biological applications is revealed and the relationship between preliminary molecular design of DSDSs and therapeutic effects of subsequent DSDSs biological applications is clarified.


Asunto(s)
Sistemas de Liberación de Medicamentos
19.
ACS Nano ; 16(9): 13783-13799, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36099446

RESUMEN

Anticancer peptides are promising drug candidates for cancer treatment, but the short circulation time and low delivery efficiency limit their clinical applications. Herein, we designed several lasso-like self-assembling anticancer peptides (LASAPs) integrated with multiple functions by a computer-aided approach. Among these LASAPs, LASAP1 (CRGDKGPDCGKAFRRFLGALFKALSHLL, 1-9 disulfide bond) was determined to be superior to the others because it can self-assemble into homogeneous nanoparticles and exhibits improved stability in serum. Thus, LASAP1 was chosen for proving the design idea. LASAP1 can self-assemble into nanoparticles displaying iRGD on the surface because of its amphiphilic structure and accumulate to the tumor site after injection because of the EPR effect and iRGD targeting to αVß3 integrin. The nanoparticles could disassemble in the acidic microenvironment of the solid tumor, and cleaved by the overexpressed hK2, which was secreted by prostate tumor cells, to release the effector peptide PTP-7b (FLGALFKALSHLL), which was further activated by the acidic pH. Therefore, LASAP1 could target the orthotopic prostate tumor in the model mice after intraperitoneal injection and specifically inhibit tumor growth, with low systematic toxicity. Combining the multiple targeting functions, LASAP1 represents a promising design of self-delivery of peptide drugs for targeted cancer treatments.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Próstata , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Diseño Asistido por Computadora , Disulfuros , Sistemas de Liberación de Medicamentos , Humanos , Integrinas , Masculino , Ratones , Nanopartículas/química , Péptidos/química , Neoplasias de la Próstata/tratamiento farmacológico , Microambiente Tumoral
20.
Acta Pharm Sin B ; 12(8): 3354-3366, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35967278

RESUMEN

Herein, we designed a dual-response shape transformation and charge reversal strategy with chemo-photodynamic therapy to improve the blood circulation time, tumor penetration and retention, which finally enhanced the anti-tumor effect. In the system, hydrophobic photosensitizer chlorin e6 (Ce6), hydrophilic chemotherapeutic drug berberrubine (BBR) and matrix metalloproteinase-2 (MMP-2) response peptide (PLGVRKLVFF) were coupled by linkers to form a linear triblock molecule BBR-PLGVRKLVFF-Ce6 (BPC), which can self-assemble into nanoparticles. Then, positively charged BPC and polyethylene glycol-histidine (PEG-His) were mixed to form PEG-His@BPC with negative surface charge and long blood circulation time. Due to the acidic tumor microenvironment, the PEG shell was detached from PEG-His@BPC attributing to protonation of the histidine, which achieved charge reversal, size reduction and enhanced tumor penetration. At the same time, enzyme cutting site was exposed, and the spherical nanoparticles could transform into nanofibers following the enzymolysis by MMP-2, while BBR was released to kill tumors by inducing apoptosis. Compared with original nanoparticles, the nanofibers with photosensitizer Ce6 retained within tumor site for a longer time. Collectively, we provided a good example to fully use the intrinsic properties of different drugs and linkers to construct tumor microenvironment-responsive charge reversal and shape transformable nanoparticles with synergistic antitumor effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA