Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 480: 135862, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293169

RESUMEN

The development of multifunctional nanofibrous membranes (NFMs) that enable anti-viral protection during air purification and respiratory disease diagnosis for health management is of increasing importance. Herein, we unraveled a heterostructure-enhanced electro-induced stereocomplexation (HEIS) strategy to fabrication of poly(lactic acid) (PLA) NFMs enabling a combination of efficient PM removal, respiratory monitoring and self-sterilization. The strategy involved an electro-induced stereocomplexation (EIS) approach to trigger the generation of hydrogen bonds between enantiomeric poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) chains, promoting CO dipole alignment and molecular polarization during electrospinning. This was further enhanced by incorporation of Ag-doped TiO2 (Ag-TIO) nanodielectrics to promote the electroactivity and surface activity, conferring profound refinement of PLA nanofibers (from 460 nm to an ultralow level of 168 nm) and high porosities of over 91 %. Arising from the sustainable generation of plentiful charges based on triboelectric nanogenerator (TENG) mechanisms, the electroactive PLA NFMs exhibited remarkable triboelectric properties even in high-humidity environments (80 %RH), excellent PM0.3 filtration efficiency with an ultralow pressure drop (93.1 %, 31.8 Pa, 32 L/min), and 100 % antimicrobial efficiency against both E. coli and S. aureus. Moreover, a deep-learning algorithm based on convolutional neural network (CNN) was proposed to recognize various respiratory patterns. The proposed strategy confers the biodegradable NFMs an unusual combination of ultralow-resistance air purification and machine learning-assisted health management, signifying promising prospects in environmental protection and personal healthcare.

2.
ACS Nano ; 18(24): 15681-15694, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848285

RESUMEN

The prolonged wound-healing process caused by pathogen infection remains a major public health challenge. The developed electrical antibiotic administration typically requires metal electrodes wired to a continuous power supply, restricting their use beyond clinical environments. To obviate the necessity for antibiotics and an external power source, we have developed a wearable synergistic electroceutical device composed of an air self-charging Zn battery. This battery integrates sustained tissue regeneration and antibacterial modalities while maintaining more than half of the initial capacity after ten cycles of chemical charging. In vitro bacterial/cell coculture with the self-charging battery demonstrates inhibited bacterial activity and enhanced cell function by simulating the endogenous electric field and dynamically engineering the microenvironment with released chemicals. This electroceutical device provides accelerated healing of a bacteria-infected wound by stimulating angiogenesis and modulating inflammation, while effectively inhibiting bacterial growth at the wound site. Considering the simple structure and easy operation for long-term treatment, this self-charging electroceutical device offers great potential for personalized wound care.


Asunto(s)
Antibacterianos , Dispositivos Electrónicos Vestibles , Cicatrización de Heridas , Animales , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Ratones , Staphylococcus aureus/fisiología , Zinc/química , Escherichia coli , Pruebas de Sensibilidad Microbiana
3.
Angew Chem Int Ed Engl ; 63(33): e202408292, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818627

RESUMEN

Redox-active azo compounds are emerging as promising cathode materials due to their multi-electron redox capacity and fast redox response. However, their practical application is often limited by low output voltage and poor thermal stability. Herein, we use a heteroatomic substitution strategy to develop 4,4'-azopyridine. This modification results in a 350 mV increase in reduction potential compared to traditional azobenzene, increasing the energy density at the material level from 187 to 291 Wh kg-1. The introduced heteroatoms not only raise the melting point of azo compounds from 68 °C to 112 °C by forming an intermolecular hydrogen-bond network but also improves electrode kinetics by reducing energy band gaps. Moreover, 4,4'-azopyridine forms metal-ligand complexes with Zn2+ ions, which further self-assemble into a robust superstructure, acting as a molecular conductor to facilitate charge transfer. Consequently, the batteries display a good rate performance (192 mAh g-1 at 20 C) and an ultra-long lifespan of 60,000 cycles. Notably, we disclose that the depleted batteries spontaneously self-charge when exposed to air, marking a significant advancement in the development of self-powered aqueous systems.

4.
Small ; : e2400824, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764257

RESUMEN

Halide perovskite, renowned for its multifunctional properties, shows considerable promise for realizing self-charging power systems. In this study, a lead-free methylammonium bismuth iodide (MA3Bi2I9) perovskite is used to create a self-charging power unit (SPU). This involves constructing a hybrid piezoelectric-triboelectric nanogenerator (Hybrid-TENG) and utilizing MA3Bi2I9 for energy storage as an anode in a lithium-ion battery (LIB). Initially, MA3Bi2I9 nanorods are synthesized and composited with a polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene polymer. The dielectric and mechanical properties of composite films having perovskite loading content are investigated. The optimized Hybrid-TENG exhibits superior performance, generating a voltage of 537 V, current density of 13.2 µA cm- 2, and maximum power density of 3.04 mW cm-2, which can be attributed to the high piezoelectric coefficient of MA3Bi2I9 nanorods (≈20.6 pm V-1). A MA3Bi2I9 thin film, serving as an electrode in LIB, demonstrates a high specific capacity of 2378.9 mAh cm-3 (578.8 mAh g-1) with a capacity retention of ≈87.5% over 100 cycles, underscoring its stable performance. Furthermore, a Hybrid-TENG is employed to charge the MA3Bi2I9-based LIB, thus realizing an SPU for driving portable electronics. This study highlights the promising potential of perovskites for developing efficient nanogenerators and LIBs, paving the way for sustainable energy solutions in small-scale electronics.

5.
Angew Chem Int Ed Engl ; 63(27): e202405166, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38600042

RESUMEN

Self-charging power systems are considered as promising alternatives for off-grid energy devices to provide sustained electricity supply. However, the conventional self-charging systems are severely restricted by the energy availability and time-consuming charging process as well as insufficient capacity. Herein, we developed an ultrafast H2O2 self-charging aqueous Zn/NaFeFe(CN)6 battery, which simultaneously integrates the H2O2 power generation and energy storage into a battery configuration. In such battery, the chemical energy conversion of H2O2 can generate electrical energy to self-charge the battery to 1.7 V through the redox reaction between H2O2 and NaFeFe(CN)6 cathode. The thermodynamically and kinetically favorable redox reaction contributes to the ultrafast H2O2 self-charging rate and the extremely short self-charging time within 60 seconds. Moreover, the rapid H2O2 power generation can promptly compensate the energy consumption of battery to provide continuous electricity supply. Impressively, this self-charging battery shows excellent scalability of device architecture and can be designed to a H2O2 single-flow battery of 7.06 Ah to extend the long-term energy supply. This work not only provides a route to design self-charging batteries with fast charging rate and high capacity, but also pushes forward the development of self-charging power systems for advanced large-scale energy storage applications.

6.
ChemSusChem ; 17(11): e202301818, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38566411

RESUMEN

With the growing demand for new energy storage devices, rechargeable aqueous zinc ion batteries (ZIBs) have attracted widespread attention due to their low cost and high safety. Among the cathode materials for ZIBs, polyanionic-based cathode materials with high voltage, high stability, and low cost have great potential. In this paper, tetragonal Na2VOP2O7 was prepared using a simple sol-gel method. The discharge platform voltage amounted to 1.8 V and had good rate and cycle performance due to the inductive effect of pyrophosphate. Then, a protective layer of Zn-hydroxyapatite (ZnHAP) modification was applied to the cathode surface, which can inhibit the hydrolysis of vanadium ions. The capacity was enhanced by 19 % after modification and the capacity retention after 100 cycles was also higher. Interestingly, the Na2VOP2O7 cathode also possesses a self-charging effect, recovering to 48 % of its initial capacity with an open-circuit voltage (OCV) of 1.1 V within a certain period, and light exposure can reduce the self-charging time by 83 %. These beneficial results indicate that the pyrophosphate bifunctional cathode with inductive effect has a great potential to construct high-voltage and multifunctional zinc ion battery.

7.
Proc Natl Acad Sci U S A ; 121(8): e2312870121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349875

RESUMEN

Oxidation self-charging batteries have emerged with the demand for powering electronic devices around the clock. The low efficiency of self-charging has been the key challenge at present. Here, a more efficient autoxidation self-charging mechanism is realized by introducing hemoglobin (Hb) as a positive electrode additive in the polyaniline (PANI)-zinc battery system. The heme acts as a catalyst that reduces the energy barrier of the autoxidation reaction by regulating the charge and spin state of O2. To realize self-charging, the adsorbed O2 molecules capture electrons of the reduced (discharged state) PANI, leading to the desorption of zinc ions and the oxidation of PANI to complete self-charging. The battery can discharge for 12 min (0.5 C) after 50 self-charging/discharge cycles, while there is nearly no discharge capacity in the absence of Hb. This biology-inspired electronic regulation strategy may inspire new ideas to boost the performance of self-charging batteries.

8.
Adv Mater ; 36(27): e2314050, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38380790

RESUMEN

Self-charging zinc batteries that combine energy harvesting technology with batteries are candidates for reliable self-charging power systems. However, the lack of rational materials design results in unsatisfactory self-charging performance. Here, a covalent organic framework containing pyrene-4,5,9,10-tetraone groups (COF-PTO) is reported as a cathode material for aqueous self-charging zinc batteries. The ordered channel structure of the COF-PTO provides excellent capacity retention of 98% after 18 000 cycles at 10 A g-1 and ultra-fast ion transfer. To visually assess the self-charging performance, two parameters, namely self-charging efficiency (self-charging discharge capacity/galvanostatic discharge capacity, η) and average self-charging rate (total discharge capacity after cyclic self-charging/total cyclic self-charging time, ν), are proposed for performance evaluation. COF-PTO achieves an impressive η of 96.9% and an ν of 30 mAh g-1 self-charge capacity per hour in 100 self-charging cycles, surpassing the previous reports. Mechanism studies reveal the co-insertion of Zn2+ and H+ double ions in COF-PTO of self-charging zinc batteries. In addition, the C═N and C═O (on the benzene) in COF-PTO are ortho structures to each other, which can easily form metal heterocycles with Zn ions, thereby driving the forward progress of the self-charging reaction and enhancing the self-charging performance.

9.
ACS Appl Mater Interfaces ; 16(8): 11050-11061, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349947

RESUMEN

The extensive utilization of high-end wireless electronic equipment in medical, robotics, satellite, and military communications has created a pressing challenge for real-time electromagnetic interference (EMI) control. Herein, a piezo-powered self-chargeable supercapacitor (PPSC) architecture based on an iron-doped graphitic nitride (Fe-g-C3N4: FGN) electrode with a solid piezoelectrolyte is devised, which can provide real-time controlled EMI shielding through piezo-powered self-charging voltage (SCV). This PPSC device along with real-time SCV-controlled EMI shielding also integrates additional features like nanoenergy generation and storing capability. The results demonstrate that the PPSC device is capable of exhibiting a piezo-tuned self-charging ability of up to 669.2 mV under 9.47 N of dynamic pressing for 180 s. The SCV electrostatically modifies the PPSC device that causes destructive interference and governs the absorption of electromagnetic radiation (EMR) and controls the absorption-dominated EMI shielding up to 59.2 dB at 500 mV. Additionally, the SCV-led electrification of the PPSC device also controls a unique functional transition from the EMR reflector to the EMR absorber at ∼90 mV. Hence, this strategy of tailored absorption and reflection adjustments of EMR could also potentially contribute toward the advancement of stealth technology for military armaments with externally controlled stealth capabilities.

10.
Adv Mater ; 36(11): e2304876, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37543841

RESUMEN

Photovoltaic devices represent an efficient electricity generation mode. Integrating them into textiles offers exciting opportunities for smart electronic textiles-with the ultimate goal of supplying power for wearable technology-which is poised to change how electronic devices are designed. Many human activities occur indoors, so realizing indoor photovoltaic fibers (IPVFs) that can be woven into textiles to power wearables is critical, although currently unavailable. Here, a dye-sensitized IPVF is constructed by incorporating titanium dioxide nanoparticles into aligned nanotubes to produce close contact and stable interfaces among active layers on a curved fiber substrate, thus presenting efficient charge transport and low charge recombination in the photoanode. With the combination of highly conductive core-sheath Ti/carbon nanotube fiber as a counter electrode, the IPVF shows a certified power conversion efficiency of 25.53% under 1500 lux illuminance. Its performance variation is below 5% after bending, twisting, or pressing for 1000 cycles. These IPVFs are further integrated with fiber batteries as self-charging power textiles, which are demonstrated to effectively supply electricity for wearables, solving the power supply problem in this important direction.

11.
Adv Mater ; 36(2): e2308042, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37845009

RESUMEN

Air self-charging power systems possess the capability of energy harvesting, conversion, and storage simultaneously. However, in general, their self-charging rate is slow and the batteries cannot be oxidized to the fully charged state due to the weak oxidizability of O2 . Herein, an ultrafast air self-charging aqueous zinc battery is designed by constructing a polyaniline@Pt/C (PANI@Pt/C) composite cathode. The introduction of Pt/C catalyst endows the redox reaction between PANI and O2 with fast reaction kinetics and extended redox potential difference. Therefore, the self-charging rate of the Zn/PANI@Pt/C batteries is effectively accelerated and they can be self-charged to fully charged state. Furthermore, the PANI can be recharged by O2 simultaneously during discharging process to compensate the consumed electrical energy, achieving prolonged energy supply. In addition, the PANI@Pt/C cathodes can be directly used as the cathodes of flexible self-charging zinc batteries due to their excellent mechanical properties. As a proof of concept, flexible soft-packaged Zn/PANI@Pt/C batteries are fabricated and displayed stable electrochemical performance and self-rechargeability even at different bending states. A route is provided here to design ultrafast chemical self-charging energy storage devices and the horizons of flexible energy storage devices are broadened.

12.
Adv Mater ; 36(1): e2308989, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37966064

RESUMEN

Pursuing high power density with low platinum catalysts loading is a huge challenge for developing high-performance fuel cells (FCs). Herein, a new super fuel cell (SFC) is proposed with ultrahigh output power via specific electric double-layer capacitance (EDLC) + oxygen reduction reaction (ORR) parallel discharge, which is achieved using the newly prepared catalyst, single-atomic platinum on bimetallic metal-organic framework (MOF)-derived hollow porous carbon nanorods (PtSA /HPCNR). The PtSA-1.74 /HPCNR-based SFC has a 3.4-time higher transient specific power density and 13.3-time longer discharge time with unique in situ self-charge and energy storage ability than 20% Pt/C-based FCs. X-ray absorption fine structure, aberration-corrected high-angle annular dark-field scanning transmission electron microscope, and density functional theory calculations demonstrate that the synergistic effect of Pt single-atoms anchored on carbon defects significantly boosts its electron transfer, ORR catalytic activity, durability, and rate performance, realizing rapid " ORR+EDLC" parallel discharge mechanism to overcome the sluggish ORR process of traditional FCs. The promising SFC leads to a new pathway to boost the power density of FCs with extra-low Pt loading.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38048182

RESUMEN

Despite the great promise in the development of biodegradable and ecofriendly air filters by electrospinning of poly(lactic acid) (PLA) nanofibrous membranes (NFMs), the as-electrospun PLA nanofibers are generally characterized by poor electroactivity and smooth surface, challenging the exploitation of electrostatic adsorption and physical interception that are in need for efficient removal of pathogens and particulate matters (PMs). Herein, a combined "electrospinning-electrospray" strategy was disclosed to functionalize the PLA nanofibers by direct anchoring of highly dielectric BaTiO3@ZIF-8 nanohybrids (BTO@ZIF-8), conferring simultaneous promotion of surface roughness, electret properties (surface potential as high as 7.5 kV), and self-charging capability (∼190% increase in tribo-output voltage compared to that of pure PLA). Benefiting from the well-tailored morphology and increased electroactivity, the electrospun-electrosprayed PLA/BTO@ZIF-8 exhibited excellent PM-capturing performance (up to 96.54% for PM0.3 and 99.49% for PM2.5) while providing desirable air resistance (only 87 Pa at 32 L/min) due primarily to the slip flow of air molecules over the nanohybrid protrusions. This was accompanied by excellent antibacterial properties (99.9% inhibition against both Staphylococcus aureus and Escherichia coli), arising presumably from the synergistic effects of enhanced reactive oxygen species (ROS) generation, plentiful ion release, and surface charges. Our proposed strategy opens up pathways to afford exceptional combination of high-efficiency and low-resistance filtration, excellent antibacterial performance, and mechanical robustness without sacrificing the biodegradation profiles of PLA NFMs, holding potential implications for efficient and long-term healthcare.

14.
Small ; 19(46): e2303593, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37467289

RESUMEN

Aqueous zinc ion batteries (ZIBs), especially those with self-charging properties, have been promisingly developed in recent years. Yet, most inorganic materials feature high redox potential, which limit their development in the self-charging field. To achieve this target, by pre-embedding potassium ions into δ-MnO2 to reduce the energy barrier in oxygen adsorption, the first application of MnO2 in self-charging ZIBs is realized. The design features a facile two-electrode configuration with no excessively complex component to allow for energy storage and conversion. Due to the voltage difference between the oxygen in the air and the discharge products, a redox reaction can be carried out spontaneously to realize the self-charging process. After the chemical self-charging process, the Zn-K0.37 MnO2 ·0.54H2 O/C cell achieves an open circuit voltage of around 1.42 V and a discharge capacity of 201 mAh g-1 , reflecting the promising self-charging capability. Besides, the chemically self-charging ZIBs operate well in multiple modes of constant current charge/discharge/chemical charging. And decent cycling capability can also be achieved at extreme temperatures and high mass loading. This work promotes the development of ZIBs and further broadens the application of inorganic metal oxides in the self-charging systems.

15.
Biosens Bioelectron ; 235: 115389, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216843

RESUMEN

The yarn-based sweat-activated battery (SAB) is a promising energy source for textile electronics due to its excellent skin compatibility, great weavability, and stable electric output. However, its power density is too low to support real-time monitoring and wireless data transmission. Here, we developed a scalable, high-performance sweat-based yarn biosupercapacitor (SYBSC) with two symmetrically aligned electrodes made by wrapping hydrophilic cotton fibers on polypyrrole/poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)-modified stainless steel yarns. Once activated with artificial sweat, the SYBSC could offer a high areal capacitance of 343.1 mF cm-2 at 0.5 mA cm-2. After 10,000 times of bending under continuous charge-discharge cycles and 25 cycles of machine washing, the device could retain the capacitance at rates of 68% and 73%, respectively. The SYBSCs were integrated with yarn-shaped SABs to produce hybrid self-charging power units. The hybrid units, pH sensing fibers, and a mini-analyzer were woven into a sweat-activated all-in-one sensing textile, in which the hybrid, self-charging units could power the analyzer for real-time data collection and wireless transmission. The all-in-one electronic textile could be successfully employed to real-time monitor the pH values of the volunteers' sweat during exercise. This work can promote the development of self-charging electronic textiles for monitoring human healthcare and exercise intensity.


Asunto(s)
Técnicas Biosensibles , Polímeros , Humanos , Sudor , Pirroles , Textiles
16.
ACS Appl Mater Interfaces ; 15(6): 8446-8461, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36719930

RESUMEN

With the contemplations of ecological and environmental issues related to energy harvesting, piezoelectric nanogenerators (PNGs) may be an accessible, sustainable, and abundant elective wellspring of energy in the future. The PNGs' power output, however, is dependent on the mechanical energy input, which will be intermittent if the mechanical energy is not continuous. This is a fatal flaw for electronics that need continuous power. Here, a self-charging flexible supercapacitor (PSCFS) is successfully realized that can harvest sporadic mechanical energy, convert it to electrical energy, and simultaneously store power. Initially, chemically processed multimetallic oxide, namely, copper cobalt nickel oxide (CuCoNiO4) is amalgamated within the poly(vinylidene fluoride) (PVDF) framework in different wt % to realize high-performance PNGs. The combination of CuCoNiO4 as filler creates a notable electroactive phase inside the PVDF matrix, and the composite realized by combining 1 wt % CuCoNiO4 with PVDF, coined as PNCU 1, exhibits the highest electroactive phase (>86%). Under periodic hammering (∼100 kPa), PNGs fabricated with this optimized composite film deliver an instantaneous voltage of ∼67.9 V and a current of ∼4.15 µA. Furthermore, PNG 1 is ingeniously integrated into a supercapacitor to construct PSCFS, using PNCU 1 as a separator and CuCoNiO4 nanowires on carbon cloth (CC) as the positive and negative electrodes. The self-charging behavior of the rectifier-free storage device was established under bending deformation. The PSCFS device exhibits ∼845 mV from its initial open-circuit potential ∼35 mV in ∼220 s under periodic bending of 180° at a frequency of 1 Hz. The PSCFS can power up various portable electronic appliances such as calculators, watches, and LEDs. This work offers a high-performance, self-powered device that can be used to replace bulky batteries in everyday electronic devices by harnessing mechanical energy, converting mechanical energy from its environment into electrical energy.

17.
Small ; 18(39): e2202792, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36038360

RESUMEN

The portable power bank as an energy storage device has received tremendous attention while the limited capacity and periodical charging are critical issues. Here, a self-charging power system (SCPS) consisting of a 0.94(Bi0.5 Na0.5 )TiO3 -0.06Ba(Zr0.25 Ti0.75 )O3 /polyvinylidenefluoride (BNT-BZT/PVDF) composite film-based triboelectric nanogenerator (TENG) is designed as a wind energy harvester and an all-solid-state lithium-ion battery (ASSLIB) as the energy storage device. The optimized TENG can provide an output voltage of ≈400 V, a current of ≈45 µA, and a maximum power of ≈10.65 mW, respectively. The ASSLIB assembled by LiNiCoMnO2 as the cathode, NiCo2 S4 as the anode, and Li7 La3 Zr2 O12 as the solid electrolyte can maintain a discharge capacity of 51.3 µAh after 200 cycles with a Coulombic efficiency of 98.5%. Particularly, an ASSLIB can be easily charged up to 3.8 V in 58 min using the wind-driven TENG, which can continuously drive 12 parallel-connected white light-emitting diodes (LEDs) or a pH meter. This work demonstrates the development of low-cost, high-performance and high-safety SCPSs and their large-scale practical application in self-powered microelectronic devices.

18.
Angew Chem Int Ed Engl ; 61(40): e202208513, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35983796

RESUMEN

Air self-charging aqueous metal-ion batteries usually suffer from capacity loss after self-charging cycles due to the formation of basic salts on cathodes in the near-neutral electrolytes. Here, air self-charging Pb/pyrene-4,5,9,10-tetraone (PTO) batteries based on proton chemistry are developed in acidic electrolyte. The fast kinetics of H+ uptake/removal endows the battery with enhanced electrochemical performance. Owing to the high standard electrode potential of oxygen in acid electrolyte, the discharged cathodes are spontaneously oxidized by oxygen in air along with H+ extraction and thus achieve self-charging without external power supply. Notably, the air self-charging mechanism involved H+ -based redox can effectively avoid the generation of basic salts on self-charging electrodes and thus guarantee long-term self-charging/galvanostatic discharging cycles of Pb/PTO batteries. This work provides a promising strategy for designing long-cycle air self-charging systems.

19.
Adv Sci (Weinh) ; 9(28): e2203249, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35975462

RESUMEN

Persistent mechanoluminescence (ML) with long lifetime is highly required to break the limits of the transient emitting behavior under mechanics stimuli. However, the existing materials with persistent ML are completely trap-controlled, and a pre-irradiation is required, which severely hinders the practical applications. In this work, a novel type of ML, self-charging persistent ML, is created by compositing the Sr3 Al2 O5 Cl2 :Dy3+ (SAOCD) powders into flexible polydimethylsiloxane (PDMS) matrix. With no need for any pre-irradiation, the as-fabricated SAOCD/PDMS elastomer could exhibit intense and persistent ML under mechanics stimuli directly, which greatly facilitates its applications in mechanics lighting, displaying, imaging, and visualization. By investigating the matrix effects as well as the thermoluminescence, cathodoluminescence, and triboelectricity properties, the interfacial triboelectrification-induced electron bombardment processes are demonstrated to be responsible for the self-charged energy in  SAOCD under mechanics stimuli. Based on the unique self-charging processes, the SAOCD/PDMS further exhibits mechanics storage and visualized reading activities, which brings novel ideas and approaches to deal with the mechanics-related problems in the fields of mechanical engineering, bioengineering, and artificial intelligence.

20.
ACS Appl Mater Interfaces ; 14(7): 9046-9056, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35143173

RESUMEN

A self-charging power system harvesting random and low-frequency wave energy into electricity provides a promising strategy for the construction of smart oceans. However, the system faces huge challenges of easy corrosion in the marine environment and the utilization of toxic organic electrolytes in energy storage devices. To address the issues above, a seawater supercapacitor (SWSC) for the marine self-charging power system is rationally proposed by using a conductive polymer, polypyrrole with hollow morphology (h-PPy), to enhance the stability and capacitance while using seawater as an eco-friendly electrolyte to reduce the cost and achieve sustainability. The hollow design provides a shortcut for the ion transportation of seawater into the h-PPy electrode, and the SWSC achieves a high power density of 4.32 kW kg-1 under an energy density of 5.12 W h kg-1. Even after 180 days in seawater, h-PPy still endows a mass retention of 99.9%, enabling the SWSC to maintain a stability of 99.3% after 6000 cycles. More importantly, when combined with a TENG module as the marine self-charging power system to harvest wave energy, the system provides a stable output in water wave to drive electronics and sensors, which shows a competitive potential in the smart ocean and marine internet of things.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA