Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biomater Appl ; : 8853282241270963, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265147

RESUMEN

Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides.The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.

2.
J Nanobiotechnology ; 22(1): 502, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169343

RESUMEN

Epothilone B (Epo B), a promising antitumor compound effective against various types of cancer cells in vitro. However, its poor selectivity for tumor cells and inadequate therapeutic windows significantly limit its potential clinical application. Affibody is a class of non-immunoglobulin affinity proteins with precise targeting capability to overexpressed molecular receptors on cancer cells, has been intensively investigated due to its exceptional affinity properties. In this study, we present a targeted nanoagent self-assembled from the precursor of an affibody conjugated with Epo B via a linker containing the thioketal (tk) group that is sensitive to reactive oxygen species (ROS). The core-shell structure of the ZHER2:342-Epo B Affibody-Drug Conjugate Nanoagent (Z-E ADCN), with the cytotoxin Epo B encapsulated within the ZHER2:342 affibody corona, leads to significantly reduced side effects on normal organs. Moreover, the abundant presence of ZHER2:342 on the surface effectively enhances the targeting capacity and tumor accumulation of the drug. Z-E ADCN can be internalized by cancer cells via HER2 receptor-mediated endocytosis followed by Epo B release in response to high levels of ROS, resulting in excellent anticancer efficacy in HER2-positive tumor models.


Asunto(s)
Epotilonas , Receptor ErbB-2 , Proteínas Recombinantes de Fusión , Receptor ErbB-2/metabolismo , Animales , Humanos , Epotilonas/química , Epotilonas/farmacología , Epotilonas/uso terapéutico , Línea Celular Tumoral , Ratones , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico
3.
Food Chem ; 460(Pt 3): 140720, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106754

RESUMEN

Personalized three-dimensional (3D) printed foods rich in probiotics were investigated. Lactiplantibacillus plantarum (Lp), as a representative of probiotics, was used to investigate the 3D printing of probiotic-rich dysphagia foods. Here, whey protein isolate nanofibrils (WPNFs) were coated and anchored on bacterial surfaces via biointerfacial supramolecular self-assembly, providing protection against environmental stress and the 3D printing process. The optimized composite gels consisting of High acyl gellan gum (0.25 g), whey protein isolate (1.25 g), fructooligosaccharides (0.75 g), Lp-WPNFs-Glyceryl tributyrate emulsion (Φ = 40%, 3.75 mL) can realize 3D printing, and exhibit high resolution, and stable shape. The viable cell count is higher than 8.0 log CFU/g. They are particularly suitable for people with dysphagia and are classified as level 5-minced & moist in the international dysphagia diet standardization initiative framework. The results provide new insights into the development of WPNFs-coating on bacterial surfaces to deliver probiotics and 3D printed food rich in probiotics.


Asunto(s)
Trastornos de Deglución , Impresión Tridimensional , Probióticos , Proteína de Suero de Leche , Probióticos/química , Proteína de Suero de Leche/química , Humanos , Nanofibras/química
4.
Adv Mater ; : e2407066, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108048

RESUMEN

The assembly and patterning engineering in two-dimensional (2D) materials hold importance for chip-level designs incorporating multifunctional detectors. At present, the patterning and stacking methods of 2D materials inevitably introduce impurity instability and functional limitations. Here, the space-confined chemical vapor deposition method is employed to achieve state-of-the-art kirigami structures of self-assembled WS2, featuring various layer combinations and stacking configurations. With this technique as a foundation, the WS2 nano-kirigami is integrated with metasurface design, achieving a photodetector with bidirectional polarization-sensitive detection capability in the infrared spectrum. Nano-kirigami can eliminate some of the uncontrollable factors in the processing of 2D material devices, providing a freely designed platform for chip-level multifunctional detection across multiple modules.

5.
Proc Natl Acad Sci U S A ; 121(35): e2405877121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163338

RESUMEN

The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/química , Doxorrubicina/farmacología , Halogenación , Ratones , Nanopartículas/química , Colorantes Fluorescentes/química , Sustancias Macromoleculares/química , Imagen Óptica/métodos , Imagen por Resonancia Magnética con Fluor-19/métodos , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
6.
Adv Mater ; 36(33): e2405630, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940073

RESUMEN

Self-assembled molecules (SAMs) have shown great potential in the application of optoelectronic devices due to their unique molecular properties. Recently, emerging phosphonic acid-based SAMs, 2-(9Hcarbazol-9-yl)ethyl]phosphonic acid (2PACz), have successfully applied in perovskite solar cells (PSCs), organic solar cells (OSCs) and perovskite light emitting diodes (PeLEDs). More importantly, impressive results based on 2PACz SAMs are reported recently in succession. Therefore, it is essential to provide an insightful summary to promote it further development. In this review, the molecule design strategies about 2PACz are first concluded. Subsequently, this work systematically reviews the recent advances of 2PACz and its derivatives for single junction PSCs, tandem PSCs, OSCs and PeLEDs. Finally, this work concludes and discusses future challenges for 2PACz and its derivatives to further develop in optoelectronic devices.

7.
Adv Sci (Weinh) ; : e2404513, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937993

RESUMEN

Zinc anodes of zinc metal batteries suffer from unsatisfactory plating/striping reversibility due to interfacial parasitic reactions and poor Zn2+ mass transfer kinetics. Herein, methoxy polyethylene glycol-phosphate (mPEG-P) is introduced as an electrolyte additive to achieve long anti-calendar aging and high-rate capabilities. The polyanionic of mPEG-P self-assembles via noncovalent-interactions on electrode surface to form polyether-based cation channels and in situ organic-inorganic hybrid solid electrolyte interface layer, which ensure rapid Zn2+ mass transfer and suppresses interfacial parasitic reactions, realizing outstanding cycling/calendar aging stability. As a result, the Zn//Zn symmetric cells with mPEG-P present long lifespans over 9000 and 2500 cycles at ultrahigh current densities of 120 and 200 mA cm-2, respectively. Besides, the coulombic efficiency (CE) of the Zn//Cu cell with mPEG-P additive (88.21%) is much higher than that of the cell (36.4%) at the initial cycle after the 15-day calendar aging treatment, presenting excellent anti-static corrosion performance. Furthermore, after 20-day aging, the Zn//MnO2 cell exhibits a superior capacity retention of 89% compared with that of the cell without mPEG-P (28%) after 150 cycles. This study provides a promising avenue for boosting the development of high efficiency and durable metallic zinc based stationary energy storage system.

8.
Foods ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38890901

RESUMEN

Electrospun/sprayed fiber films and nanoparticles were broadly studied as encapsulation techniques for bioactive compounds. Nevertheless, many of them involved using non-volatile toxic solvents or non-biodegradable polymers that were not suitable for oral consumption, thus rather limiting their application. In this research, a novel electrospun lipid-polymer composite (ELPC) was fabricated with whole generally recognized as safe (GRAS) materials including gelatin, medium chain triglyceride (MCT) and lecithin. A water-insoluble bioactive compound, tetrahydrocurcumin (TC), was encapsulated in the ELPC to enhance its delivery. Confocal laser scanning microscopy (CLSM) was utilized to examine the morphology of this ELPC and found that it was in a status between electrospun fibers and electrosprayed particles. It was able to form self-assembled emulsions (droplets visualized by CLSM) to deliver active compounds. In addition, this gelatin-based ELPC self-assembled emulsion was able to form a special emulsion gel. CLSM observation of this gel displayed that the lipophilic contents of the ELPC were encapsulated within the cluster of the hydrophilic gelatin gel network. The FTIR spectrum of the TC-loaded ELPC did not show the fingerprint pattern of crystalline TC, while it displayed the aliphatic hydrocarbon stretches from MCT and lecithin. The dissolution experiment demonstrated a relatively linear release profile of TC from the ELPC. The lipid digestion assay displayed a rapid digestion of triglycerides in the first 3-6 min, with a high extent of lipolysis. A Caco-2 intestinal monolayer transport study was performed. The ELPC delivered more TC in the upward direction than downwards. MTT study results did not report cytotoxicity for both pure TC and the ELPC-encapsulated TC under 15 µg/mL. Caco-2 cellular uptake was visualized by CLSM and semi-quantified to estimate the accumulation rate of TC in the cells over time.

9.
Chemistry ; 30(37): e202401045, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693094

RESUMEN

Natural light-responsive rhodopsins play a critical role in visual conversion, signal transduction, energy transmission, etc., which has aroused extensive interest in the past decade. Inspired by these gorgeous works of living beings, scientists have constructed various biomimetic light-responsive nanochannels to mimic the behaviors of rhodopsins. However, it is still challenging to build stimuli-responsive sub-nanochannels only regulated by visible light as the rhodopsins are always at the sub-nanometer level and regulated by visible light. Pillar[6]arenes have an open cavity of 6.7 Å, which can selectively recognize small organic molecules. They can be connected to ions of ammonium or carboxylate groups on the rims. Therefore, we designed and synthesized the amino and carboxyl-derived side chains of pillar[6]arenes with opposite charges. The sub-nanochannels were constructed through the electrostatic interaction of layer-by-layer self-assembled amino and carboxyl-derived pillar[6]arenes. Then, the natural chromophore of the retinal with visible light-responsive performance was modified on the upper edge of the sub-nanochannel to realize the visible light switched on and off. Finally, we successfully constructed a visible light-responsive sub-nanochannel, providing a novel method for regulating the selective transport of energy-donating molecules of ATP.

10.
Small ; 20(35): e2310416, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38660815

RESUMEN

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.


Asunto(s)
Péptidos , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Humanos , Línea Celular Tumoral , Péptidos/química , Péptidos/farmacología , Ratones , Nanofibras/química
11.
Angew Chem Int Ed Engl ; 63(33): e202403068, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38687308

RESUMEN

Organic self-assembled molecules (OSAMs) based hole-transporting materials play a pivotal role in achieving highly efficient and stable inverted perovskite solar cells (IPSCs). However, the reported carbazol-based OSAMs have serious drawbacks, such as poor wettability for perovskite solution spreading due to the nonpolar surface, worse matched energy arrangement with perovskite, and limited molecular species, which greatly limit the device performance. To address above problems, a novel OSAM [4-(3,6-glycol monomethyl ether-9H-carbazol-9-yl) butyl]phosphonic acid (GM-4PACz) was synthesized as hole-transporting material by introducing glycol monomethyl ether (GM) side chains at carbazolyl unit. GM groups enhance the surface energy of Indium Tin Oxide (ITO)/SAM substrate to facilitate the nucleation and growth of up perovskite film, suppress cation defects, release the residual stress at SAM/perovskite interface, and evaluate energy level for matching with perovskite. Consequently, the GM-4PACz based IPSC achieves a champion PCE of 25.52 %, a respectable open-circuit voltage (VOC) of 1.21 V, a high stability, possessing 93.29 % and 91.75 % of their initial efficiency after aging in air for 2000 h or tracking at maximum power point for 1000 h, respectively.

12.
Int J Biol Macromol ; 254(Pt 1): 127718, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918594

RESUMEN

In this study, the nano-assemblies of bovine casein hydrolyzed peptides (HP) modified by fatty acids with various alkyl chain lengths (C8, C10, C12 and C14) were synthesized. The physicochemical properties of HP-C8-HP-C14 nano-assemblies were characterized using spectra, laser particle size analyzer, contact angle meter, scanning electron microscope (SEM) and cryo-transmission electron microscope (Cryo-TEM). HP-C8 and HP-C10 self-assembled into a hollow cube cage with an average size of ~500 nm, and the assembly of HP-C12 showed a flower-shaped morphology with more dispersed behavior, and droplet size was observed as ~20 nm. The in vitro cytotoxicity against human breast cancer cells MCF-7 was tested using CCK-8 assay and flow cytometry analysis. HP-C12 showed the highest cytotoxicity for MCF-7 cells with an inhibition rate of 66.03 % ± 0.35 % with an IC50 value of 7.4 µM among HP-Cn. HP-C8, HP-C10 and HP-C12 significantly affected on the migration, invasion and apoptosis of MCF-7 cells. The apoptosis mechanism may depend on the upregulation of anti-apoptotic protein Bcl-2 as well as pro-apoptotic proteins Bax and caspase-8. The dead MCF-7 cells were analyzed with UHPLC-MS/MS using untargeted metabolomics, revealing key metabolic pathways.


Asunto(s)
Anticarcinógenos , Ácidos Grasos , Animales , Bovinos , Humanos , Ácidos Grasos/química , Anticarcinógenos/farmacología , Caseínas/farmacología , Espectrometría de Masas en Tándem , Apoptosis , Células MCF-7
13.
Adv Sci (Weinh) ; 11(1): e2304946, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37946704

RESUMEN

Clusteroluminescence (CL) has recently gained significant attention due to its unique through-space interactions associated with a high dependence on the aggregation of subgroups. These distinct features could easily transform the stimuli into visual fluorescence and monitor the fluctuation of the environment but have not received sufficient attention before. In this work, supramolecular films are designed based on the neutralization reaction of anhydride groups and the self-assembly of dynamic covalent disulfide bonds in NaOH aqueous solution. The self-assembly of hydrophilic carboxylate chromophores and hydrophobic disulfide-containing five-membered rings could be observed by the variation of the aggregation state of carboxylate in CL. Furthermore, the dynamic cross-linking films obtained with water-sensitive carboxylate chromophores could alter the aggregation distance stimulated by surrounding water vapor, causing the emission wavelength to change from 534 to 508 nm by varying the relative humidity. This work not only provides an approach to monitor the self-assembly of clusteroluminogens but also offers new strategies for designing stimuli-responsive materials that utilize the intrinsic features of CL.

14.
ACS Appl Bio Mater ; 6(12): 5125-5144, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38011318

RESUMEN

Every year cancer causes approximately 10 million deaths globally. Researchers have developed numerous targeted drug delivery systems (DDSs) with nanoparticles, polymers, and liposomes, but these synthetic materials have poor degradability and low biocompatibility. Because DNA nanostructures have good degradability and high biocompatibility, extensive studies have been performed to construct DDSs with DNA nanostructures as the molecular-layer master frame (MF) assembled via programmable DNA-aided self-assembly for targeted drug release. To learn the progressing trend of self-assembly techniques and keep pace with their recent rapid advancements, it is crucial to provide an overview of their past and recent progress. In this review article, we first present the techniques to assemble the MF of a DDS with solely DNA strands; to assemble MFs with one or more additional type of construction materials, e.g., polymers (including RNA and protein), inorganic nanoparticle, or metal ions, in addition to DNA strands; and to assemble the more complex DNA nanocomplexes. It is observed that both the techniques used and the MFs constructed have become increasingly complex and that the DDS constructed has an increasing number of advanced functions. From our focused review, we anticipate that DDSs with the MF of multiple building materials and DNA nanocomplexes will attract an increasing number of researchers' interests. On the basis of knowledge about materials and functional components (e.g., targeting aptamers/peptides/antibodies and stimuli for drug release) obtained from previously performed studies, researchers can combine more materials with DNA strands to assemble more powerful MFs and incorporate more components to endow DDSs with improved or additional properties/functions, thereby subsequently contributing to cancer prevention.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , ADN/química , Polímeros , Neoplasias/tratamiento farmacológico
15.
Eur J Pharmacol ; 958: 176008, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37673364

RESUMEN

The α-MSH peptide plays a significant role in the regulation of pigmentation via the melanocortin 1 receptor (MC1R). It increases the DNA repair capacity of melanocytes and reduces the incidence of skin cancers. As such, α-MSH analogs could have the utility for protecting against UV-induced skin DNA damage in susceptible patients. Recently, α-MSH analogs have been approved for the treatment of erythropoietic protoporphyria, hypoactive sexual desire, or pediatric obesity. However, the delivery of these drugs requires inconvenient implants or frequent injections. We recently found that select palmitoylated melanocortin analogs such as afamelanotide and adrenocorticotropin peptides self-assemble to form liquid gels in situ. To explore the utility of these novel analogs, we studied their pharmacological characteristics in vitro and in vivo. Acylated afamelanotide (DDE 313) and ACTH1-24 (DDE314) analogs form liquid gels at 6-20% and have a significantly increased viscosity at >2.5% compared to original analogs. Using the DDE313 analog as a prototype, we showed gel-formation reduces the passage of DDE313 through Centricon filters, and subcutaneous injection of analog gel in rats leads to the sustained presence of the peptide in circulation for >12 days. In addition, DDE313 darkened the skin of frogs for >4 weeks, whereas those injected with an equivalent dose of afamelanotide lost the tanning response within a few days. Because self-assembled gels allow sustained activation of melanocortin receptors, further studies of these analogs may allow the development of effective and convenient tanning therapies to prophylactically protect against UV-induced malignant transformation of skin cells in susceptible patients.


Asunto(s)
Neoplasias Cutáneas , alfa-MSH , Animales , Ratas , alfa-MSH/farmacología , Geles/farmacología , Melanocitos , Piel
16.
Chem Biol Interact ; 384: 110710, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716421

RESUMEN

Poloxamer 188 is a widely used pharmaceutical excipient, which can be found in a variety of drug formulations. In this study, a novel self-assembled nanoplatform was developed for active targeting of folate receptor-overexpressing triple-negative breast cancer. This platform, FPP NPs, was prepared by the retrofitted poloxamer 188 derivatives, resulting in nanoparticles with an appropriate size (< 100 nm), good stability, and satisfactory biocompatibility. Cellular uptake and in vivo distribution studies showed that the FPP NPs had strong tumor cell uptake and active targeting capabilities. Furthermore, docetaxel (DTX) was loaded into FPP NPs in this research. The resulting DTX/FPP NPs exhibited high drug encapsulation efficiency and drug loading capacity, and could rapidly release DTX under slightly acidic conditions, significantly increasing the antitumor activity of the encapsulated drug both in vitro and in vivo. In addition, DTX/FPP NPs could significantly decrease the hepatotoxicity and nephrotoxicity of DTX. Therefore, this drug delivery nanoplatform, based on retrofitted poloxamer 188 with self-assembly properties in aqueous solution and active targeting capabilities to tumors, may provide a promising approach for targeted treatment of triple-negative breast cancer.

17.
Adv Sci (Weinh) ; 10(31): e2304465, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37635186

RESUMEN

Constructing nanostructures with high structural stability and ultrafast electrochemical reaction kinetics as anodes for sodium-ion batteries (SIBs) is a big challenge. Herein, the robust 2D VS2 / Ti3 C2 Tx MXene nanostructures with the strong Ti─S covalent bond synthesized by a one-pot self-assembly approach are developed. The strong interfacial interaction renders the material of good structural durability and enhanced reaction kinetics. Meanwhile, the enlarged and few-layered MXene nanosheets can be easily obtained according to this interaction, providing a conductive network for sufficient electrolyte penetration and rapid charge transfer. As predicted, the VS2 /MXene nanostructures exhibit an extremely low sodium diffusion barrier confirmed by DFT calculations and small charge transfer impedance evidenced by electrochemical impedance spectroscopy (EIS) analysis. Therefore, the SIBs based on the VS2 /MXene electrode present first-class electrochemical performance with the ultrahigh average initial columbic efficiency of 95.08% and excellent sodium-ion storage capacity of 424.6 mAh g-1 even at 10 A g-1 . It also shows an outstanding sodium-ion storage capacity of 514.2 mAh g-1 at 1 A g-1 with a capacity retention of nearly 100% within 500 times high-rate cycling. Such impressive performance demonstrates the successful synthesis strategy and the great potential of interfacial interactions for high-performance energy storage devices.

18.
J Colloid Interface Sci ; 652(Pt A): 557-566, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37607418

RESUMEN

Controllable construction and manipulation of artificial multi-compartmental structures are crucial in understanding and imitating smart molecular elements such as biological cells and on-demand delivery systems. Here, we report a liquid crystal droplet (LCD) based three-dimensional system for controllable and reversible ingestion and release of guest aqueous droplets (GADs). Induced by interfacial thermodynamic fluctuation and internal topological defect, microscale LCDs with perpendicular anchoring condition at the interface would spontaneously ingest external components from the surroundings and transform them as radially assembled tiny GADs inside LCDs. Landau-de Gennes free-energy model is applied to describe and explain the assembly dynamics and morphologies of these tiny GADs, which presents a good agreement with experimental observations. Furthermore, the release of these ingested GADs can be actively triggered by changing the anchoring conditions at the interface of LCDs. Since those ingestion and release processes are controllable and happen very gently at room temperature and neutral pH environment without extra energy input, these microscale LCDs are very prospective to provide a unique and viable route for constructing hierarchical 3D structures with tunable components and compartments.

19.
Gels ; 9(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37504391

RESUMEN

We report the rheological behavior of aqueous solutions of a graft copolymer polyampholyte, constituted of polyacrylic acid (PAA) backbone grafted by Poly(L-lysine) (PAA-b-PLL). The graft copolymer self-assembles in aqueous media, forming a three-dimensional (3D) network through polyelectrolyte complexation of the oppositely charged PAA and PLL segments. Rheological investigations showed that the hydrogel exhibits interesting properties, namely, relatively low critical gel concentration, elastic response with slow dynamics, remarkable extended critical strain to flow, shear responsiveness, injectability, 3D printability and self-healing. Due to the weak nature of the involved polyelectrolyte segments, the hydrogel properties display pH-dependency, and they are affected by the presence of salt. Especially upon varying pH, the PLL secondary structure changes from random coil to α-helix, affecting the crosslinking structural mode and, in turn, the overall network structure as reflected in the rheological properties. Thanks to the biocompatibility of the copolymer constituents and the biodegradability of PLL, the designed gelator seems to exhibit potential for bioapplications.

20.
Anal Chim Acta ; 1274: 341576, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455086

RESUMEN

Gold clusters with intriguing chemical/physical properties have great promise in applications such as sensing and bio-imaging due to their fascinating photoluminescence character. In this study, an immunofluorescence sensor based on levonorgestrel protected atomically precise Au8 nanocluster (Au8NC) for aflatoxin B1 (AFB1) detection was fabricated due to its strong carcinogenic and mutagenic effect on humans. The prepared polymer-Au8NC nanospheres displayed bright luminescence and good stability in aqueous solution. The obtained AFB1 fluorescent strip immunosensor achieved quantitative point-of-care detection of AFB1 in less than 15 min, with high selectivity and detection limits down to 0.27 ng/mL. In addition, the recovery rates of AFB1 from tea soup ranged from 96% to 105% with relative standard deviations less than 10%. This work not only realized high-sensitively fluorescent sensing for AFB1, but also expanded the bio-applications of atomic-precise metal clusters.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Aflatoxina B1/análisis , Técnicas Biosensibles/métodos , Inmunoensayo , Contaminación de Alimentos/análisis , Oro , Colorantes , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA